n维单位行向量(a1,a2,a3,an),其中a1^2+a2^2+.an^2=1,它的转置就是n维单位列向量。
单位列向量,即向量的长度为1,其向量所有元素的平方和为1。n维列向量是n行1列,n维行向量是1行n列;直观是,列向量是1列,行向量是1行。
在线性代数中,列向量是一个 n×1 的矩阵,即矩阵由一个含有n个元素的列所组成:列向量的转置是一个行向量,反之亦然。所有的列向量的集合形成一个向斗拍量空间,它是所有行向量集合的对偶空间。
矩阵乘法是把慧丛每一个矩阵的 列向量同另一个矩阵的每行向量相乘。欧几里得空间的点积就是把其中一个列向量的转置与另一个列向量相乘。
扩展资料:
列向量的转置是一个行向量,反之亦然。 所有的列向量的集合形成一个向量空间,它是所有行向量集合的对偶空间。
为了进一步的简化,有些学者把行向量与列向量都写成行的形式,不过行向量的元素用空格隔开,而列向量的元素则用逗号隔开。 举例来说,假设x是一个行向量,那么x与x能被这样表示。
在线性代数中,行向量是一前销樱个 1×n的矩阵,即矩阵由一个含有n个元素的行所组成即行向量。行向量的转置是一个列向量,反之亦然。所有的行向量的集合形成一个向量空间,它是所有列向量集合的对偶空间。
参考资料来源:百度百科——单位列向量