解:(1)∵f(1)=1, f(2)=1+4=5, f(3)=1+4+8=13, f(4)=1+4+8+12=25, ∴f(5)=1+4+8+12+16=41. (2)∵f(2)﹣f(1)=4=4×1, f(3)﹣f(2)=8=4×2, f(4)﹣f(3)=12=4×3, f(5)﹣f(4)=16=4×4, 由上式规律得出f(n+1)﹣f(n)=4n. ∴f(n)﹣f(n﹣1)=4(n﹣1), f(n﹣1)﹣f(n﹣2)=4 (n﹣2), f(n﹣2)﹣f(n﹣3)=4 (n﹣3), … f(2)﹣f(1)=4×1, ∴f(n)﹣f(1)=4[(n﹣1)+(n﹣2)+…+2+1] =2(n﹣1) n, ∴f(n)=2n 2 ﹣2n+1. (3)当n≥2时, = = ( ﹣ ), ∴ + + +…+ =1+ (1﹣ + ﹣ +…+ ﹣ ) =1+ (1﹣ )= ﹣ . |