如何用圆规和一把没刻度的尺子,画出一个正十七边形

2020-06-09 教育 399阅读

具体步骤如下:

1、在与圆O的直径AB垂直的半径OC上,作出OC的中点D,在OB上作一点E,使OE等于半径的1/8;

2、以E为圆心,ED长为半径作弧,与OA、OB分别交于F、G;

3、以F为圆心,FD长为半径作弧,交OA延长线于H,以G为圆心,GD长为半径作弧,交OA于I;

4、作OB中点J,以线段IJ为直径作圆,交OC于K;

5、过K作AB的平行线,与以线段OH为直径的圆交于远端L,过L作OC的平行线,与圆O交于M,弧AM就是圆O的1/17;

6、最后,依次连结各点就可得到正十七边形。

扩展资料

正十七边形的起源:

最早的十七边形画法创造人是高斯。1801年数学家高斯证明:如果费马数k为质数,那么就可以用直尺和圆规将圆周k等分。但是,高斯本人并没有用尺规做出正十七边形,事实上,完成证明之后正十七边形的做法对数学研究者是显而易见的。

第一个真正的正十七边形尺规作图法是在1825年由约翰尼斯·厄钦格(Johannes Erchinger)给出 。

高斯(1777─1855年)德国数学家、物理学家和天文学家。高斯在童年时代就表现出非凡的数学天才。年仅三岁,就学会了算术,八岁因运用等差数列求和公式而深得老师和同学的钦佩。大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件。

解决了两千年来悬而未决的难题,1799年以代数基本定理的四个漂亮证明获博士学位。高斯的数学成就遍及各个领域,在数学许多方面的贡献都有着划时代的意义。并在天文学,大地测量学和磁学的研究中都有杰出的贡献。

参考资料:百度百科-正十七边形



声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com