电磁辐射能的吸收与分子的激发态
光化学的初级过程是分子吸收光子使电子激发,分子由基态提升到激发态。分子中的电子状态、振动与转动状态都是量子化的,即相邻状态间的能量变化是不连续的。因此分子激发时的初始状态与终止状态不同时,所要求的光子能量也是不同的,而且要求二者的能量值尽可能匹配。由于光子的能量ε=hv=hc/λ(式中h为普朗克常数;v为光的频率;λ为光的波长;c为光速),所以能量匹配体现为光的波长的匹配。
分子在一般条件下处于能量较低的稳定状态,称作基态。受到光照射后,如果分子能够吸收分子,就可以提升到能量较高的状态,称作激发态。如果分子可以吸收不同波长的电磁辐射,就可以达到不同的激发态。按其能量的高低,从基态往上依次称做第一激发态、第二激发态等等;而把高于第一激发态的所有激发态统称为高激发态。激发态分子的寿命一般较短,而且激发态越高,其寿命越短,以致于来不及发生化学反应,所以光化学主要与低激发态有关。激发时分子所吸收的电磁辐射能有两条主要的耗散途径:一是和光化学反应的热效应合并;二是通过光物理过程转变成其他形式的能量。光物理过程又可分为:①辐射弛豫过程,即将全部或一部分多余的能量以辐射能的形式耗散掉,分子回到基态,如发射荧光或磷光;②非辐射弛豫过程,多余的能量全部以热的形式耗散掉,分子回到基态(见雅布隆斯基态图解)。
如果分子中的电子是一一配对的(电子自旋方向相反),这种状态在光谱学上称为单重(线)态(在分子式左上角用上标1表示,如1A,或记作S,依能量由低至高分别用S0、S1、…表示)。若分子中有两个电子的自旋平行,这种状态称为三重(线)态(用3A或T1、T2、…表示)。单重态的激发态寿命很短,一般在10-8~10-9秒的量级。当基态为单重态时,激发三重态的寿命一般较长,可达到10-3~100秒的量级。所以有机化合物的光化学大都是三重态的光化学。
分子处于激发态时,由于电子激发可引起分子中价键结合方式的改变〔如电子由成键的 π轨道跃迁到反键的π*轨道,记作(π,π*);或由非键的n轨道跃迁到反键的π*轨道,记作(n,π*)等〕,使得激发态分子的几何构型、酸度、颜色、反应活性或反应机理可能和基态时有很大的差别,因此光化学比基态(热)化学更加丰富多彩。 也叫量子效率或量子产额。是光化学重要的基本量之一。设反应为A hv→B,初级过程的量子产率定义为:
如果激发态的A分子在变成为B的同时,还平行地发生着其他光化学和光物理过程,那么这个初级过程的量子产率将受到其他竞争的平行过程的“量子产率”的影响。由于在一般光强条件下,每个分子只能吸收1个光子,所以所有初级过程的量子产率的总和应等于1。
量子效率的测定有绝对测定法与相对测定法。相对法指与一种其绝对量产率为已知的体系相比较的方法。绝对法则要求直接建立起反应的量子产率和波长、温度、光强以及各种离子(特别是氢离子)浓度间的函数关系。现在已经研究过的这类体系有气体体系(如一氧化二氮、二氧化碳、溴化氢、丙酮等);液相体系(如草酸铁(Ⅲ)钾溶液、草酸铀酰溶液、二苯酮-二苯甲醇、2-己酮、偶氮苯、苯甲酸等〕;固相体系(如硝基苯甲醛、二苯酮-二苯甲醇等)。这些方法所用的仪器统称为化学露光计。 原子从分子中的一处移向他处的反应称为分子重排反应。许多有机分子在光激发后发生的重排过程也属于次级步骤。如苯经光激发后变为亚甲基环戊二烯的反应:
第一步只是苯环中6个比较自由的共轭 π电子的激发(一般只激发1个电子),这对苯分子中的碳氢键影响不大;而在次级步骤中由于原子的重排,生成了结构完全不同的产物。
有时,初级光化学过程可用作研究次级反应的工具,光敏化反应就属于这类情况。如汞原子能有效地吸收汞灯发射的光而被激发,然后通过与其他分子的碰撞,传递所吸收的能量。例如:
Hg+hv─→Hg*
Hg*+N2O─→Hg+N2+O
氧原子可以和体系中存在的其他物质反应,从释放出来的氮气量可以计算出所产生的氧原子数量。
如果初级光化学步骤是分子光解成两个自由基(有单个或未配对电子的分子碎片),通常,其次级步骤为链反应。氢与氯的反应是已经熟知的例子,其过程为:
hv+Cl2─→2Cl
Cl+H2─→HCl+H
H+Cl2─→HCl+Cl
在链反应中,每个量子可以产生多个产物分子,因此这类反应的总量子产率不仅可能大于1,有时可以达到几百甚至几千。所以当量子产率大于1时,一般可考虑反应具有链反应的机理。
决定一个光化学反应的真正途径往往需要建立若干个对应于不同机理的假想模型,找出各模型体系与浓度、光强及其他有关参量间的动力学方程,然后考察何者与实验结果的相符合程度最高,以决定哪一个是最可能的反应途径。研究反应机理的常用实验方法,除示踪原子标记法外,在光化学中最早采用的猝灭法仍是非常有效的一种方法。这种方法是通过被激发分子所发荧光被其他分子猝灭的动力学测定来研究光化学反应机理的。它可以用来测定分子处于电子激发态时的酸性、分子双聚化的反应速率和能量的长程传递速率。猝灭是一种双分子过程,如原激发分子为A*,猝灭剂分子为Q,此过程为:
A*+Q─→A+Q*
显然猝灭过程也是一种敏化过程。Q可以看成是 A*的猝灭剂,也可以把A看成是Q的敏化剂。