1.符号思想
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学的内容,这就是符号思想。符号思想是将复杂的文字叙述用简洁明了的字母公式表示出来,便于记忆,便于运用。把客观存在的事物和现象及它们相互之间的关系抽象概括为数学符号和公式,有一个从具体到表象再抽象的过程。在数学中各种量的关系,量的变化以及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式来表达大量的信息。
2.化归思想
化归思想是数学中最普遍使用的一种思想方法,其基本思想是:把甲问题的求解,化归为乙问题的求解,然后通过乙问题的解反向去获得甲问题的解。它的基本原则是:化难为易,化生为熟,化繁为简。
3.转换思想
转换思想是一种解决数学问题的重要策略,是由一种形式变换成另一种形式的思想方法。对问题进行转换时,既可转换已知条件,也可转换问题的结论。用转换思想来解决数学问题,转换仅是第一步,第二步要对转换后的问题进行求解,第三步要将转换后问题的解答反演成问题的解答。
4.类比思想
数学上的类比思想是指依据两类数学对象的相似性,将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁,从而可以激发起学生的创造力。