现代教学理论认为:教学过程既是学生在教师指导下的认知过程,又是学生能力的发展过程。因此教师要彻底掘弃和摆脱传统的"填鸭式"教学,把主要经历放在为学生创设学习情境,提供信息,引导学生积极思维上。关键是增强学生的参与意识,提高学生的参与意识,提高学生的课堂参与度。
一、利用学生原有的知识和能力是提高课堂参与度的必要条件。
奥苏伯尔认为:学生是否能吸取到新的信息与学生认知结构中已有的有关概念和经验有很大关系。数学学科有其严密的系统性和逻辑性,大多数数学知识点都有其前期的基础,后期的深化和发展。给学生必要的知识和技能的准备是学生积极参与数学课堂教学的必要条件,因此,在数学教学过程中,教师应把所学的知识作适当的"降格处理".所谓"降格处理",有的是把新知识通过难度下降,使新知识变成学生似曾相识的东西。激发学生解决问题的欲望;有的是找准新旧知识的连接点。学生在学习数学中完全陌生的内容是很少见的,对学习的内容总是既感到熟悉,有感到陌生。要让学生在新旧知识的比较中找出共同点与区别点,顺利的完成正迁移,通过类似的探索解决新的问题。
启发学生思考:①能不能把与 直接相加?②可以怎么计算?然后让学生独立完成。通过这样的处理,教师积极的引导学生参与算法的探究过程,能充分利用已有的同分母分数加减法和通分的知识学会异分母分数加减法的计算方法。
二、引导学生动手操作是提高课堂参与度的重要手段。
课堂教学是师生多边的活动过程。教师的"教"是为了学生的"学".优化课堂教学的关键是教师在教学过程中积极引导学生最大限度的参与,让学生动手操作、动眼观察、动脑思考、动口表达。因此,教师必须强化学生的参与意识,主动为学生参与教学过程创设条件、创设情境,如教学"长方体的特征"这一课,主要设计了以下几个环节:1. 首先教师出示若干个物体的包装盒,让学生先对他们进行分类,并叙述自己的分类理由。
2. 教师拿起一个每个面都是长方形的盒子让学生观察、触摸长方体有什么特征。
3.通过学生的总结、教师的引到总结出长、正方体的所有特征。
4.让学生用橡皮泥做顶点、长短不同的细木棒做棱,四人一个小组合作制作一个长方体、一个正方体。
通过这样的设计,将操作、观察、思维与语言表达结合在一起,不仅使学生参与教学的整个过程,而且还启迪了思维发展,达到了数学教学使学生既长知识又长技能的目的。
三、设置认知冲突是提高学生课堂参与度的重要因素
学生的参与欲望是一个不容忽视的因素,而学生的认知冲突是学生学习动机的源泉,也是学生积极参与思维学习的原因。所以,教师在教学中要不断设置认知冲突,激发学生的参与欲望。如"长、正方形的面积"这一课的教学,先出示12个大小相同的1cm2小正方形,摆一个大长方形,有几种摆法?然后提问长方形的面积与什么有关?有什么关系?你能验证吗?通过这样设计,层层深入,不断设置认知冲突,是学生始终处于一个不断发现问题和解决问题的过程之中。有助于激发学生的求知欲望和参与欲望。
四、因材施教,是提高课堂参与度的前提条件
面向全体学生,让每个学生都参与到整个学习活动中去。同时,又要注意学生个性的发展,这是大面积提高教学质量的前提。个性差异毕竟存在,所以在课堂上必须做到"上不封顶,下要保底".在教学中,我针对各种教学内容,精心设计课堂练习,让不同认知水平的学生从实际出发,有题可做。如,在教学分数应用题时,出示了这样四个题目:1. 车站堆放36吨货物,运走了 ,运走了多少吨?
2. 车站利堆放一批货物,运走了 ,恰好是10.8吨,这批货物有多少吨?
3. 车站利堆放一批货物,运走了 ,还剩25.2吨。这批货物有多少吨?
4. 车站利堆放一批货物,第一次运走了全部 ,第二次运走了全部 ,共运了7.2吨,这批货物有多少吨?
在练习时,让学习程度中下等的学生做第1、2题,中上水平的同学在做完1、2题后,再开动脑筋做第3、4题。这样,不仅使多数学生能"吃得了",而且是少数学生能"吃的饱".这样的分层练习不但在课堂上进行,在课后的练习中,我也采用这样的方法。有能力、学习好的留一些难题,中、下等的学生留一些较简单的习题。
总之,在教学过程中,要充分调动起学生的积极性,创造良好的问题情景和学习氛围,使学生积极主动的参与的教学的整个过程中。