计量经济学报告中局限性要怎么写

2023-05-15 综合 17阅读
最好有以下几块东西  1、选定研究对象  (确定被解释变量,说明选题的意义和原因等。)  2、确定解释变量,尽量完备地考虑到可能的相关变量供选择,并初步判定个变量对被解释变量的影响方向。  (作出相应的说明)  3、确定理论模型或函数式  (根据相应的理论和经济关系设立模型形式,并提出假设,系数是正的好配还是负的等。)  (二)数据的收集和整理  (三)数据处理和回归分析  (先观察数据的特点,观看和输出散点图,最后选择相应的变量关系式进行OLS回归,并输出会归结果。)  (四)回归结果分析和检验  (写出模型估计的结果)  1、回归结果的经济理论检验,方向正确否?理论一致否?  2、统计检验,t检验F检验R2—拟合优度检验  3、模型设定形式正确否改袜宴?可试试其他形式。  4、模型的稳定性检验。  (五)模型的修正  (对所发现的模型变量选择问题、设定偏误、模型不稳定等,进行修正。)  (六)确定模型  (七)预测  实验三多元回归模型  【实验目的】  掌握建立多元回归模型和比较、筛选模型的方法。  【实验内容】  建立我国国有独立核算工业企业生产函数。根据生产函数理论,生产函数的基本形式为:。其中,L、K分别为生产过程中投入的劳动与资金,时间变量反映技术进步的影响。表3-1列出了我国1978-1994年期间核银国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。  表3-1我国国有独立核算工业企业统计资料  年份时间  工业总产值  Y(亿元)职工人数  L(万人)固定资产  K(亿元)  197813289.1831392225.70  197923581.2632082376.34  198033782.1733342522.81  198143877.8634882700.90  198254151.2535822902.19  198364541.0536323141.76  198474946.1136693350.95  198585586.1438153835.79  198695931.3639554302.25  1987106601.6040864786.05  1988117434.0642295251.90  1989127721.0142735808.71  1990137949.5543646365.79  1991148634.8044727071.35  1992159705.5245217757.25  19931610261.6544988628.77  19941710928.6645459374.34  资料来源:根据《中国统计年鉴-1995》和《中国工业经济年鉴-1995》计算整理  【实验步骤】  一、建立多元线性回归模型  一建立包括时间变量的三元线性回归模型;  在命令窗口依次键入以下命令即可:  ⒈建立工作文件:CREATEA7894  ⒉输入统计资料:DATAYLK  ⒊生成时间变量:GENRT=@TREND(77)  ⒋建立回归模型:LSYCTLK  则生产函数的估计结果及有关信息如图3-1所示。  图3-1我国国有独立核算工业企业生产函数的估计结果  因此,我国国有独立工业企业的生产函数为:  (模型1)  =(-0.252)(0.672)(0.781)(7.433)  模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为0.6667,资金的边际产出为0.7764,技术进步的影响使工业总产值平均每年递增77.68亿元。回归系数的符号和数值是较为合理的。,说明模型有很高的拟合优度,F检验也是高度显著的,说明职工人数L、资金K和时间变量对工业总产值的总影响是显著的。从图3-1看出,解释变量资金K的统计量值为7.433,表明资金对企业产出的影响是显著的。但是,模型中其他变量(包括常数项)的统计量值都较小,未通过检验。因此,需要对以上三元线性回归模型做适当的调整,按照统计检验程序,一般应先剔除统计量最小的变量(即时间变量)而重新建立模型。  二建立剔除时间变量的二元线性回归模型;  命令:LSYCLK  则生产函数的估计结果及有关信息如图3-2所示。  图3-2剔除时间变量后的估计结果  因此,我国国有独立工业企业的生产函数为:  (模型2)  =(-2.922)(4.427)(14.533)  从图3-2的结果看出,回归系数的符号和数值也是合理的。劳动力边际产出为1.2085,资金的边际产出为0.8345,表明这段时期劳动力投入的增加对我国国有独立核算工业企业的产出的影响最为明显。模型2的拟合优度较模型1并无多大变化,F检验也是高度显著的。这里,解释变量、常数项的检验值都比较大,显著性概率都小于0.05,因此模型2较模型1更为合理。  三建立非线性回归模型——C-D生产函数。  C-D生产函数为:,对于此类非线性函数,可以采用以下两种方式建立模型。  方式1:转化成线性模型进行估计;  在模型两端同时取对数,得:  在EViews软件的命令窗口中依次键入以下命令:  GENRLNY=log(Y)  GENRLNL=log(L)  GENRLNK=log(K)  LSLNYCLNLLNK  则估计结果如图3-3所示。  图3-3线性变换后的C-D生产函数估计结果  即可得到C-D生产函数的估计式为:  (模型3)  =(-1.172)(2.217)(9.310)  即:  从模型3中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理,而且拟合优度较模型2还略有提高,解释变量都通过了显著性检验。  方式2:迭代估计非线性模型,迭代过程中可以作如下控制:  ⑴在工作文件窗口中双击序列C,输入参数的初始值;  ⑵在方程描述框中点击Options,输入精度控制值。  控制过程:  ①参数初值:0,0,0;迭代精度:10-3;  则生产函数的估计结果如图3-4所示。  图3-4生产函数估计结果  此时,函数表达式为:  (模型4)  =(0.313)(-2.023)(8.647)  可以看出,模型4中劳动力弹性=-1.01161,资金的产出弹性=1.0317,很显然模型的经济意义不合理,因此,该模型不能用来描述经济变量间的关系。而且模型的拟合优度也有所下降,解释变量L的显著性检验也未通过,所以应舍弃该模型。  ②参数初值:0,0,0;迭代精度:10-5;  图3-5生产函数估计结果  从图3-5看出,将收敛的误差精度改为10-5后,迭代100次后仍报告不收敛,说明在使用迭代估计法时参数的初始值与误差精度或迭代次数设置不当,会直接影响模型的估计结果。  ③参数初值:0,0,0;迭代精度:10-5,迭代次数1000;  图3-6生产函数估计结果  此时,迭代953次后收敛,函数表达式为:  (模型5)  =(0.581)(2.267)(10.486)  从模型5中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理,,具有很高的拟合优度,解释变量都通过了显著性检验。将模型5与通过方式1所估计的模型3比较,可见两者是相当接近的。  ④参数初值:1,1,1;迭代精度:10-5,迭代次数100;  图3-7生产函数估计结果  此时,迭代14次后收敛,估计结果与模型5相同。  比较方式2的不同控制过程可见,迭代估计过程的收敛性及收敛速度与参数初始值的选取密切相关。若选取的初始值与参数真值比较接近,则收敛速度快;反之,则收敛速度慢甚至发散。因此,估计模型时最好依据参数的经济意义和有关先验信息,设定好参数的初始值。  二、比较、选择最佳模型  估计过程中,对每个模型检验以下内容,以便选择出一个最佳模型:  一回归系数的符号及数值是否合理;  二模型的更改是否提高了拟合优度;  三模型中各个解释变量是否显著;  四残差分布情况  以上比较模型的一、二、三步在步骤一中已有阐述,现分析步骤一中5个不同模型的残差分布情况。  分别在模型1~模型5的各方程窗口中点击View/Actual,Fitted,Residual/Actual,Fitted,ResidualTable(图3-8),可以得到各个模型相应的残差分布表(图3-9至图3-13)。  可以看出,模型4的残差在前段时期内连续取负值且不断增大,在接下来的一段时期又连续取正值,说明模型设定形式不当,估计过程出现了较大的偏差。而且,模型4的表达式也说明了模型的经济意义不合理,不能用于描述我国国有工业企业的生产情况,应舍弃此模型。  模型1的各期残差中大多数都落在的虚线框内,且残差分别不存在明显的规律性。但是,由步骤一中的分析可知,模型1中除了解释变量K之外,其余变量均为通过变量显著性检验,因此,该模型也应舍弃。  模型2、模型3、模型5都具有合理的经济意义,都通过了检验和F检验,拟合优度非常接近,理论上讲都可以描述资本、劳动的投入与产出的关系。但从图3-13看出,模型5的近期误差较大,因此也可以舍弃该模型。  最后将模型2与模型3比较发现,模型3的近期预测误差略小,拟合优度比模型2略有提高,因此可以选择模型2为我国国有工业企业生产函数。
声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com