大数据经济学是在经济学研究和应用中采用大数据并且采用大数据思想对传统经济学进行深化的新兴交叉学科。
大数据经济学不仅要研究如何建模、管理和应用大数据,而且要深入研究传统经济学如何应对大数据带来的挑战并进行改良,大数据经济学需要经济学家、领域专家和信息技术专家等密切合作,对人文社科与 自然科学的跨学科研究提出了更高的要求,并且对整个经济学、社会学、公共管理等将带来革命性变革。
大数据经济学的研究内容
第一,大数据计量经济学 (Big Data Econo—m etrics)。这是和传统计量经济学对应的一个学科,也是大数据经济学下面的子学科。在大数据背景下,经济学建模与分析方法与传统计量经济学完全不同,迫切需要采用全新的思路和方法进行研究。对信息技术专家们而言,大数据经济学仅仅是算法和建模问题,但是如果没有经济学理论指导,没有经济学家的思维,必然会导致研究方向的迷失。一些大数据领域的学者认为 “要相关,不要因果”,这是非常要不得的,传统经济学理论至今仍然到处闪烁着智慧的光芒,对经济现象的深入见解时刻发挥着重要的作用,所以大数据背景下的经济学分析不能主要靠信息技术的建模专家来进行,必须继续依靠大数据计量经济学家。
第二,大数据统计学 (Big Data Statistics)。如前所述,大数据给统计学带来的挑战是革命性的,在某些领域,传统统计学所采用的抽样调查方式必将彻底淘汰。此外,传统统计学所要求的精确数据与数据加工方式可能是画蛇添足甚至败笔之举,人们更加重视对一手数据而不是经过加工过的二手统计数据进行分析。大数据时代,人们更加关注原始数据、关注半结构化甚至非结构化数据,浏览记录、查询关键词、微薄文字、照片等等都是宝贵的数据资源。在大数据时代,传统统计学也必须进行变革,对数据储存手段、处理设备、处理方法都提出了新的要求。
第三,大数据领域经济学。包括大数据生态经济学、大数据环境经济学、大数据金融学、大数据城市经济学、大数据工业经济学、大数据农业经济学、大数据交通经济学、大数据建筑经济学、大数据商业经济学、大数据信息经济学、大数据人口经济学等学科,借用大数据的思想和技术来进行各应用经济领域的研究。
在以上大数据经济学的各学科中,大数据统计学是基础,大数据计量经济学是研究方法,而大数据领域经济学是具体的运用,他们之间存在着密切的共生关系。
大数据由于是基于总体的,很大程度上解决了传统宏观经济学与微观经济学缺乏较强逻辑联系的问题,此外大数据对传统计量经济学带来的一个有益之处就是,结构化的大数据更加接近正态分布,这样 就降低 了小样本假设检验失效问题 。