不动点定理的定理启示

2022-04-04 体育 150阅读

建立布劳威尔不动点定理是他的突出贡献.这个定理表明:在二维球面上,任意映到自身的一一连续映射,必定至少有一个点是不变的.他把这一定理推广到高维球面.尤其是,在n维球内映到自身的任意连续映射至少有一个不动点.在定理证明的过程中,他引进了从一个复形到另一个复形的映射类,以及一个映射的映射度等概念.有了这些概念,他就能第一次处理一个流形上的向量场的奇点.
康托尔揭示了不同的n与空间Rn的一一对应关系.G.皮亚诺(Peano)则实现了把单位线段连续映入正方形.这两个发现启示了,在拓扑映射中,维数可能是不变的.1910年,布劳威尔对于任意的n证明了这个猜想——维数的拓扑不变性.在证明过程中,布劳威尔创造了连续拓扑映射的单纯逼近的概念,也就是一系列线性映射的逼近.他还创造了映射的拓扑度的概念——一个取决于拓扑映射连续变换的同伦类的数.实践证明,这些概念在解决重要的不变性问题时非常有用.例如,布劳威尔就借助它界定了n维区域;J.W.亚历山大(Alexander)则用它证明了贝蒂数的不变性.
这些都是不动点定理的一种延伸。

声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com