随机过程问题:求标准正态分布N(0,1)的特征函数。

2020-09-23 国际 244阅读
C(u)=E(j*u*X)=1/√(2*π)∫{-∞,+∞}e^(j*u*x-x²/2)dx,直接积分较困难

由于d[e^(j*u*x-x²/2)]/dx=(j*u-x)*e^(j*u*x-x²/2),因此先考察下列积分:
1/√(2*π)∫{-∞,+∞}(j*u-x)*e^(j*u*x-x²/2)dx
=1/√(2*π)∫{-∞,+∞}e^(j*u*x-x²/2)d[e^(j*u*x-x²/2)]
=1/√(2*π)*e^(j*u*x-x²/2)|{-∞,+∞}
=1/√(2*π)*[cos(u*x)/e^(x²/2)+j*sin(u*x)/e^(x²/2)]| {-∞,+∞}
=0 ①
①式为零是因为有界函数与无穷小量的乘积仍为无穷小量

而1/√(2*π)∫{-∞,+∞}j*u*e^(j*u*x-x²/2)dx
= j*u*1/√(2*π)∫{-∞,+∞}e^(j*u*x-x²/2)dx
= j*u*C(u) ②

注意到C(u)对u求导得
C’(u) =1/√(2*π)∫{-∞,+∞} j*x*e^(j*u*x-x²/2)dx,
故1/√(2*π)∫{-∞,+∞}x*e^(j*u*x-x²/2)dx
=(-j)*1/√(2*π)∫{-∞,+∞} j*x*e^(j*u*x-x²/2)dx
=(-j)*C’(u) ③

由①②③式得
j*u*C(u)+j*C’(u)=0,即
C’(u)+u*C(u)=0 ④
将微分方程④分离变量d[C(u)]/C(u)=-udu
两边积分lnC(u)=-1/2*u²+lnC
整理得C(u)=C*e^(-1/2*u²)
将初始条件C(0)=1代入上式得,C=1
故C(u)=e^(-1/2*u²)
声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com