计量经济学
期末实验报告
实验名称:大中城市城镇居民人均消费支出与其影响因素的分析
姓名:
学号:
班级:()级统计学系()班
指导教师:
时间:
(上面是论文封皮)
23个城市城镇居民人均消费支出与其影响因素的分析(题目)
一、经济理论背景
近几年来,中国经济保持了快速发展势头,投资、出口、消费形成了拉动经济发展的“三架马车”,这已为各界所取得共识。通过建立计量模型,运用计量分析方法对影响城镇居民人均消费支出的各因素进行相关分析,找出其中关键影响因素,以为政策制定者提供一定参考,最终促使消费需求这架“马车”能成为引领中国经济健康、快速、持续发展的基石。
二、有关人均消费支出及其影响因素的理论
我们主要从以下几个方面分析我国居民消费支出的影响因素:
①、居民未来支出预期上升,影响了居民即期消费的增长
居民的被动储蓄直接导致购买力的巨大分流,从而减弱对消费品的即期需求,严重地影响了居民即期消费的增长,进而导致有效需求的不足,最终导致经济增长的乏力。90年代末期以来,我国的医疗、养老、失业保险、教育等一系列改革措施集中出台,原有的体制被打破,而新的体制尚未建立健全,因此目前的医疗、养老、失业保险、教育体制对居民个人支出的压力较大,而且基本上都是硬性支出,支出的不确定性也很大,导致居民目前对未来支出预期的上升。
②、商品供求结构性矛盾依然突出
从消费结构上看,我国消费品市场已发生了新的根本性变化:居民低层次消费已近饱和,而更高水平的消费又未达到。改革开放20多年来,城乡居民经过了一个中档耐用消费品的普及阶段后,目前老百姓的收入消费还不足以形成一个新的、以高档产品为内容的主导性消费热点,如轿车、住房等还远不能纳入大多数人的消费主流,居民现有的购买力不能形成推动主导消费品升级的动力。
③、物价总水平持续在低水平运行,通货紧缩的压力较大,不利于消费的增长
加入WTO之后,随着关税的降低和进口规模的扩大,国外产品对我国市场的冲击将进一步加大,国际价格紧缩对国内价格变化将产生负面影响。物价的持续下降,不利于居民的消费增长。因为从居民的消费心理上看,买涨不买降是居民购物的习惯心理。由于居民对物价有进一步下降的预期,因此往往推迟消费,不利于居民消费的增长。另外,从统计上分析,由于物价的下降,名义消费增长往往低于实际消费的增长,这在一定程度上也不利于消费增长幅度的提高。
④、我国现阶段没有形成大的消费热点,难以带动消费的快速增长
经过近几年的培育和发展,我国目前已经形成了住房消费、居民汽车消费、通信及电子产品的消费、节假日消费及旅游消费等一些消费亮点,可以促进消费的稳定增长,但始终未能形成大的消费热点,因此不能带动消费的高速增长。
三、相关数据收集
相关数据均来源于2006年《中国统计年鉴》:
23个大中城市城镇居民家庭基本情况(表格)
地区平均每户就业人口(人)平均每一就业者负担人数(人)平均每人实际月收入(元)人均可支配收入(元)人均消费支出(元)
北京1.61.81865.11633.21187.9
天津1.42.02010.61889.8939.8
石家庄1.42.01061.31010.0722.9
太原1.32.21256.91159.9789.5
呼和浩特1.51.91354.21279.8772.7
沈阳1.32.11148.51048.7812.1
大连1.61.81269.81133.1946.5
长春1.81.71156.11016.1690.2
哈尔滨1.42.0992.8942.5727.4
上海1.61.91884.01686.11505.3
南京1.42.01536.41394.0920.6
杭州1.51.91695.01464.91264.2
宁波1.51.81759.41543.21271.4
合肥1.61.81042.5950.1686.9
福州1.71.91172.51059.4942.8
厦门1.51.91631.71394.3998.7
南昌1.41.81405.01321.1665.4
济南1.71.71491.31356.81071.4
青岛1.61.81495.61378.51020.7
郑州1.42.11012.2954.2750.3
武汉1.52.01052.5972.2853.1
长沙1.42.11256.91148.9986.8
广州1.71.81898.61591.11215.1
四、模型的建立
根据数据,我们建立多元线性回归方程的一般模型为:
其中:
——人均消费支出
——常数项
——回归方程的参数
——平均每户就业人口数
——平均每一就业者负担人口数
——平均每人实际月收入
——人均可支配收入
——随即误差项
五、实验过程
(一)回归模型参数估计
根据数据建立多元线性回归方程:
首先利用Eviews软件对模型进行OLS估计,得样本回归方程。
利用Eviews输出结果如下:
DependentVariable:Y
Method:LeastSquares
Date:12/11/07Time:16:08
Sample:123
Includedobservations:23
VariableCoefficientStd.Errort-StatisticProb.
C-1682.1801311.506-1.2826330.2159
X1564.3490395.23321.4278890.1704
X2569.1209379.78661.4985280.1513
X31.5525100.6293712.4667660.0239
X4-1.1806520.742107-1.5909470.1290
R-squared0.721234Meandependentvar945.2913
AdjustedR-squared0.659286S.D.dependentvar224.1711
S.E.ofregression130.8502Akaikeinfocriterion12.77564
Sumsquaredresid308191.9Schwarzcriterion13.02249
Loglikelihood-141.9199F-statistic11.64259
Durbin-Watsonstat2.047936Prob(F-statistic)0.000076
根据多元线性回归关于Eviews输出结果可以得到参数的估计值为:,,,,
从而初步得到的回归方程为:
Se=(1311.506)(395.2332)(379.7866)(0.629371)(0.742107)
T=(-1.282633)(1.427889)(1.498528)(2.466766)(-1.590947)
F=11.64259df=18
模型检验:由于在的水平下,解释变量、、的检验的P值都大于0.05,所以变量不显著,说明模型中可能存在多重共线性等问题,进而对模型进行修正。
(二)处理多重共线性
我们采用逐步回归法对模型的多重共线性进行检验和处理:
X1:
DependentVariable:Y
Method:LeastSquares
Date:12/11/07Time:16:28
Sample:123
Includedobservations:23
VariableCoefficientStd.Errort-StatisticProb.
C153.8238518.66880.2965740.7697
X1523.0964341.48401.5318330.1405
R-squared0.100508Meandependentvar945.2913
AdjustedR-squared0.057675S.D.dependentvar224.1711
S.E.ofregression217.6105Akaikeinfocriterion13.68623
Sumsquaredresid994441.2Schwarzcriterion13.78497
Loglikelihood-155.3917F-statistic2.346511
Durbin-Watsonstat1.770750Prob(F-statistic)0.140491
X2:
DependentVariable:Y
Method:LeastSquares
Date:12/11/07Time:16:29
Sample:123
Includedobservations:23
VariableCoefficientStd.Errort-StatisticProb.
C1756.641667.26582.6325960.0156
X2-424.1146347.9597-1.2188610.2364
R-squared0.066070Meandependentvar945.2913
AdjustedR-squared0.021597S.D.dependentvar224.1711
S.E.ofregression221.7371Akaikeinfocriterion13.72380
Sumsquaredresid1032515.Schwarzcriterion13.82254
Loglikelihood-155.8237F-statistic1.485623
Durbin-Watsonstat1.887292Prob(F-statistic)0.236412
X3:
DependentVariable:Y
Method:LeastSquares
Date:12/11/07Time:16:29
Sample:123
Includedobservations:23
VariableCoefficientStd.Errort-StatisticProb.
C182.8827137.83421.3268310.1988
X30.5404000.0953435.6679600.0000
R-squared0.604712Meandependentvar945.2913
AdjustedR-squared0.585888S.D.dependentvar224.1711
S.E.ofregression144.2575Akaikeinfocriterion12.86402
Sumsquaredresid437014.5Schwarzcriterion12.96276
Loglikelihood-145.9362F-statistic32.12577
Durbin-Watsonstat2.064743Prob(F-statistic)0.000013
X4:
DependentVariable:Y
Method:LeastSquares
Date:12/11/07Time:16:30
Sample:123
Includedobservations:23
VariableCoefficientStd.Errort-StatisticProb.
C184.7094161.81781.1414650.2665
X40.5964760.1242314.8013380.0001
R-squared0.523300Meandependentvar945.2913
AdjustedR-squared0.500600S.D.dependentvar224.1711
S.E.ofregression158.4178Akaikeinfocriterion13.05129
Sumsquaredresid527020.1Schwarzcriterion13.15003
Loglikelihood-148.0898F-statistic23.05284
Durbin-Watsonstat2.037087Prob(F-statistic)0.000096
由得出的数据可以看出,的调整的判定系数最大,因此首先把引入调整的方程中,然后在分别引入变量、、进行OLS得:
X1、X3
DependentVariable:Y
Method:LeastSquares
Date:12/11/07Time:16:32
Sample:123
Includedobservations:23
VariableCoefficientStd.Errort-StatisticProb.
C-222.8991345.9081-0.6443880.5266
X1289.8101227.20701.2755330.2167
X30.5172130.0956935.4048990.0000
R-squared0.634449Meandependentvar945.2913
AdjustedR-squared0.597894S.D.dependentvar224.1711
S.E.ofregression142.1510Akaikeinfocriterion12.87276
Sumsquaredresid404138.2Schwarzcriterion13.02087
Loglikelihood-145.0368F-statistic17.35596
Durbin-Watsonstat2.032110Prob(F-statistic)0.000043
X2、X3
DependentVariable:Y
Method:LeastSquares
Date:12/11/07Time:16:33
Sample:123
Includedobservations:23
VariableCoefficientStd.Errort-StatisticProb.
C239.5536531.14350.4510150.6568
X2-27.00981244.0392-0.1106780.9130
X30.5368560.1027835.2232210.0000
R-squared0.604954Meandependentvar945.2913
AdjustedR-squared0.565449S.D.dependentvar224.1711
S.E.ofregression147.7747Akaikeinfocriterion12.95036
Sumsquaredresid436747.0Schwarzcriterion13.09847
Loglikelihood-145.9292F-statistic15.31348
Durbin-Watsonstat2.063247Prob(F-statistic)0.000093
X3、X4
DependentVariable:Y
Method:LeastSquares
Date:12/11/07Time:16:34
Sample:123
Includedobservations:23
VariableCoefficientStd.Errort-StatisticProb.
C331.7015142.58822.3262900.0306
X31.7668920.5534023.1927820.0046
X4-1.4737210.656624-2.2443900.0363
R-squared0.684240Meandependentvar945.2913
AdjustedR-squared0.652664S.D.dependentvar224.1711
S.E.ofregression132.1157Akaikeinfocriterion12.72634
Sumsquaredresid349091.0Schwarzcriterion12.87445
Loglikelihood-143.3529F-statistic21.66965
Durbin-Watsonstat2.111635Prob(F-statistic)0.000010
由数据结果可以看出,引入X4时方程的调整判定系数最大,且解释变量均通过了显著性检验,再分别引入X1、X2进行分析。
X1、X3、X4
DependentVariable:Y
Method:LeastSquares
Date:12/11/07Time:16:37
Sample:123
Includedobservations:23
VariableCoefficientStd.Errort-StatisticProb.
C193.6693403.84640.4795620.6370
X189.29944243.65120.3665050.7180
X31.6526220.6460032.5582280.0192
X4-1.3450010.757634-1.7752650.0919
R-squared0.686457Meandependentvar945.2913
AdjustedR-squared0.636950S.D.dependentvar224.1711
S.E.ofregression135.0712Akaikeinfocriterion12.80625
Sumsquaredresid346640.3Schwarzcriterion13.00373
Loglikelihood-143.2719F-statistic13.86591
Durbin-Watsonstat2.082104Prob(F-statistic)0.000050
X2、X3、X4
DependentVariable:Y
Method:LeastSquares
Date:12/11/07Time:16:38
Sample:123
Includedobservations:23
VariableCoefficientStd.Errort-StatisticProb.
C62.60939489.20880.1279810.8995
X2134.1557232.93030.5759480.5714
X31.8865880.6000273.1441750.0053
X4-1.5963940.701018-2.2772510.0345
R-squared0.689658Meandependentvar945.2913
AdjustedR-squared0.640657S.D.dependentvar224.1711
S.E.ofregression134.3798Akaikeinfocriterion12.79599
Sumsquaredresid343100.8Schwarzcriterion12.99347
Loglikelihood-143.1539F-statistic14.07429
Durbin-Watsonstat2.143110Prob(F-statistic)0.000046
由输出结果可以看出,在的水平下,解释变量、的检验的P值都大于0.05,解释变量不能通过显著性检验,因此可以得出结论模型中只能引入X3、X4两个变量。则调整后的多元线性回归方程为:
Se=(142.5882)(0.553402)(0.656624)
T=(2.326290)(3.192782)(-2.244390)
F=21.66965df=20
(三).异方差性的检验
对模型进行怀特检验:
WhiteHeteroskedasticityTest:
F-statistic1.071659Probability0.399378
Obs*R-squared4.423847Probability0.351673
TestEquation:
DependentVariable:RESID^2
Method:LeastSquares
Date:12/11/07Time:16:53
Sample:123
Includedobservations:23
VariableCoefficientStd.Errort-StatisticProb.
C34247.50128527.90.2664600.7929
X3247.9623628.19240.3947230.6977
X3^2-0.0712680.187278-0.3805480.7080
X4-333.6779714.3390-0.4671140.6460
X4^20.1211380.2299330.5268410.6047
R-squared0.192341Meandependentvar15177.87
AdjustedR-squared0.012861S.D.dependentvar23242.54
S.E.ofregression23092.59Akaikeinfocriterion23.12207
Sumsquaredresid9.60E+09Schwarzcriterion23.36892
Loglikelihood-260.9038F-statistic1.071659
Durbin-Watsonstat1.968939Prob(F-statistic)0.399378
由检验结果可知,,由White检验知,在时,查分布表,得临界值(20)=30.1435,因为<(5)=30.1435,所以模型中不存在异方差。
(四).自相关的检验
由模型的输出结果可知,估计结果都比较满意,无论是回归方程检验,还是参数显著性检验的检验概率,都显著小于0.05,D-W值为2.111635,显著性水平=0.05下查Durbin-Watson表,其中n=23,解释变量的个数为2,得到下限临界值,上限临界值,=1.543
回归方程的意义为:当平均每人实际月收入不变时,人均可支配收入每增加一个单位,人均消费支出减少1.473721个单位;当人均可支配收入不变时,平均每人实际月收入每增加一个单位,人均消费支出增加1.766892个单位。
七、就模型所反映的问题给出针对性的政策建议或结论
对于我国人均消费支出的分析中,可以看出我国在过去的几年里经济发展稳健,但是由于种种原因导致我国经济的现状存在一定的问题,如不完善的社会保障制度导致消费结构不合理;过高的居民储蓄存款影响居民消费倾向;消费品生产行业投资方向失误和低效率引起国内市场消费梗阻;保守的消费观念和消费政策的制约;教育支出比重过大影响居民消费倾向。对此我们国家应该在以下几个方面对居民消费中存在的问题进行对策研究
(一)建立和完善社会保障制度,增强居民消费信心
(二)培育新的消费热点,拓展居民的消费领域
(三)促使商品消费从自我积累型向信用支持型转变
(四)分层次促进居民消费
(五)破解影响消费结构优化的政策制约
(六)化解有效供给不足与产品相对过剩的矛盾