y=e^xsinx的N阶导数一般表达式怎么求

2020-05-30 社会 137阅读
莱布尼茨公式里有:(e^x)'(n)=e^x; (sinkx)'(n)=(k^n)*sin(kx+n∏/2)
y'=e^x*sinx+e^x*cosx
y''=e^x*sinx+e^x*cosx+e^x*cosx-e^x*sinx
=2e^x*cosx
y'''=2e^x*cosx-2e^x*sinx
y''''=2(e^x*cosx-e^x*sinx-e^x*sinx-e^x*cosx)
=-4e^x*sinx
.......
组合以上结果,可以归纳出
y(n)=2^(n/2)*e^x*sin(x+n∏/4).n=1,2,3,…….
声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com