1、列计算表,求∑x,∑xx,∑y,∑yy,∑xy。
2、计算Lxx,Lyy,LxyLxx=∑(x-xˇ)(x-xˇ)Lyy=∑(y-yˇ)(y-yˇ)Lxy=∑(x-xˇ)(y-yˇ)
3、求相关系数,并检验;r=Lxy/(LxxLyy)1/2
4、求回归系数b和常数a;b=Lxy/Lxxa=y-bx
5、列回归方程。
扩展资料:
根据最小平方法或其他方法,可以从样本数据确定常数项A与回归系数B的值。A、B确定后,有一个X的观测值,就可得到一个Y的估计值。回归方程是否可靠,估计的误差有多大,都还应经过显著性检验和误差计算。有无显著的相关关系以及样本的大小等等,是影响回归方程可靠性的因素。
如果只有一个自变量X,而且因变量Y和自变量X之间的数量变化关系呈近似线性关系,就可以建立一元线性回归方程,由自变量X的值来预测因变量Y的值,这就是一元线性回归预测。
如果因变量Y和自变量X之间呈线性相关,那就是说,对于自变量X的某一值
这些因素的影响大小和方向都是不确定的,通常用一个随机变量(记为
参考资料来源: