由全体整数组成的集合叫整数集。它包括全体正整数、全体负整数和零,数学中整数集通常用Z来表示。
所有正整数组成的集合称为正整数集,记作N*,Z+或N+
所有负整数组成的集合称为负整数集,记作Z-
全体非负整数组成的集合称为非负整数集(或自然数集),记作N
在整数系中,零和正整数统称为自然数。-1,-2,-3,…,-n,…(n为非零自然数)为负整数。则正整数,零与负整数构成整数系,整数不包括小数,分数,如果不加特殊说明,我们所涉及的数都是整数,所采用的字母也表示整数。
我们以0为界限,有正整数,即大于0的整数如,1,2,3······直到n。零,既不是正整数,也不是负整数,它是介于正整数和负整数的数,负整数,即小于0的整数如,-1,-2,-3,整数也可分为奇数和偶数两类。
扩展资料
Z由来涉及到一个德国女数学家对环理论的贡献,她叫诺特。1920年,她已引入“左模”,“右模”的概念。1921年写出的《整环的理想理论》是交换代数发展的里程碑。她是德国人,德语中的整数叫做Zahlen,于是当时她将整数环记作Z,从那时候起整数集就用Z表示了。
全体有理数组成的集合称为有理数集,记作Q,全体实数组成的集合称为实数集,记作R,全体虚数组成的集合称为虚数集,记作I,全体实数和虚数组成的复数的集合称为复数集,记作C。
参考资料百度百科--整数集