如何理解小学数学新课标中的核心概念
在目标里边,可以看到了对这些核心概念的一些具体解释,相当于目标的一些要素。但是同时也能发现它们之间是密切联系的,所以核心概念有一个承上启下的作用。上面连着目标,下面联系着内容,是非常重要的,所以也把它称为核心概念。(一)为什么要设计核心概念 在这次课程标准修订过程中,除了前面说的这些理念,怎么设计这个课程标准,也进行了一个讨论,在提出设计的过程中有两件事情是重要的,一个就是希望课程的这些东西,形成一个整体,如何整体的把握课程需要反复强调。从知识技能,从过程方法,从情感态度价值观,几个方面来构架整个数学课程。这是一个渗透在整个标准的研制过程中。第二件事,就是在研制的过程中,希望能够凸显出需要给予高度的重视的数学内容,因为它反应了数学最要紧的东西,最本质的东西,不仅应该把它当做目标,也应该把它和内容有机的结合起来。记得当时在讨论的时候,就在过去义务教育的基础上,能不能用一些词,把这些东西彰显出来,经过讨论,提出了十个核心概念。(二)核心概念的理解 1.数感 数感在实验稿里边就提出来,在修订稿里边又进一步明确了数感的含义。在这里边,有这样两句话,来帮助理解数感。数感主要是指关于数与数量,数量关系,运算结果估计等方面的感悟。这是一层含义,是一种感悟,对那些数量、数量关系和估算结果的估计这种感悟。然后第二句话的含义是建立数感,有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。这两层意思都是数感,什么是数感?数感是一种感悟,是对数量、对数量关系结果估计的感悟;第二层意思就是数感的功能。学习数学是要会去思考问题,一个本质的问题就是要建立数学思想,而数学思想一个核心就是抽象,而对数的抽象认识,又是最基本。 2.符号意识 关于符号意识,注意到它在用词上,标准的修改稿和实验稿有一个区别,原来是叫符号感,现在把它称为叫符号意识。因为符号感更多的是感知,是一个最基本的层次。而符号意识对学生理解要求更高一些。在标准里边它是这样来表述的,符号意识主要是指能够理解并且运用符号,来表示数,数量关系和变化规律。就是用符号来表示,表示什么,表示数,数量关系和变化规律,这是一层意思。 还有一层意思,就是知道使用符号可以进行运算和推理,另外可以获得一个结论,获得结论具有一般性。所以标准上,大概用分号隔开是两层意思,一个是会表示,另外一个进行分开进行推理,得到一般性的结论。符号意识有助于学生理解符号的使用,是数学表达和数学思考的重要形式。 3.空间观念和几何直观 空间观念是原来大纲里有的,现在是在原来的基础上做了进一步的刻画。具体是这么描述的,空间观念主要是指根据物体特征,抽象出的几何图形,根据几何图形想象出所描写实物,想象出实物的方位和它们的相互位置关系,描述图形的运动和变化,根据语言的描述,画出图形等等。这是对于空间观念的一个刻画。 空间观念和几何直观这两个概几何直观主要是指利用图形描述和分析问题,借助几何直观,可以把复杂的数学问题,变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观的理解数学,在整个数学的学习中,发挥着重要的作用。 4.数据分析观念 数据分析的观念是指:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。体会数据中蕴含着信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。一方面对于同样的事物,每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律,数据分析是统计的核心。 5.运算能力 运算能力,标准中是这样说的,只要是指能够根据法则和运算进行正确的运算的能力。培养运算能力有助于学生理解运算,寻求合理、简洁的运算途径解决问题。运算始终是中小学教学里边非常重要的组成部分,对数的认识,数的运算,一直都占很大的篇幅,另外也是学生学习数学的一个重要的标志。 6.推理能力 推理能力是标准实验稿中就提出的一个核心概念,在修改稿当中,仍然也保留了这样一个核心概念。经过这几年的实验,老师们对推理能力,应该有了一个比较全面的认识,以往在谈推理的时候,老师首先想到就是演绎推理和逻辑推理,而现在推理能力实际上包含了两个方面。首先推理是数学的基本思维方式,也是人们学习和生活当中,经常使用的一种思维方式,推理一般包括合情推理和演绎推理,合情推理的外延包含了两个大方面,一个是合情推理,一个是演绎推理。演绎推理是从已知的事实出发,按照一些确定的规则,然后进行逻辑的推理,进行证明和计算。换句话说,从思维形式的角度,是从一般到特殊的过程,在几何的证明当中,实际上都是这样一种推理形式。合情推理是从已有的事实出发,评论一些经验、直觉,通过归纳和类比等等这样一些形式,来进行推断,来获得一些可能性结论这样一种思维方式。和演绎推理不一样的是从特殊到一般这样一种推理,所以合情推理得到的结论,知道不一定是对的,通常可能称之为猜想、推测,是一个可能性结论。但是合情推理在数学整个发展过程当中,包括在学生学习数学和今后的未来的社会生产实践和生活当中,都是特别重要的。 7.模型思想 首先说一下标准的解释,就是模型思想的建立,使学生体会和理解数学与外物世界联系的基本途径,建立和求解模型的过程包括,从现实生活或具体情境中,抽象出数学问题,用数学符号,建立方程、不等式、函数等数学模型的数量关系和变化规律,然后求出结果,并讨论结果的意义。这些内容的学习有助于学生初步的形成模型的思想,提高学习数学的兴趣和应用意识。这个基本上模型思想概括的比较清楚。 8.应用意识和创新意识 首先是应用意识,应用意识说白了就是强调数学和现实的联系,数学和其他学科的联系,如何运用所学到的数学,去解决现实中和其他学科中的一些问题,当然也包括运用数学知识去解决另一个数学问题。