我的理解,随机序列是“有顺序,有标号”的一系列随机数,随机过程是研究它们统计学特性的学科(特别是“时相关”特性,这个是随机变量研究里没有的)。随机序列一般不是有标号(离散的标号,例如x1,x2,...),就是有时间轴(连续的标号,比如s(t)其中t为时间),最重要的特点是“有顺序”!
和一般的随机变量不同(你每次的观测量只是一个数而已),对于随机序列,你每次的观测量,就最起码是一大长串随机数了。
举两个例子:
(1)某支股票的每日收盘价(只看收盘价!),这是个典型的离散时间轴随机序列,间隔为1天,股票价格受很多因素影响因而呈现随机性,但是统计上仍然有规律可循。
(2)电子仪器的噪声曲线,这是个典型的连续时间轴随机序列,你任何时候都能从仪器读到值,该值随机,但是这个值是有统计规律的,例如波动范围之类的参数。
随机过程的重要性,就是研究随机序列的一些统计学特性,特别是“时相关”特性。比如金融学里,人们就建立了大量的模型,去研究股票走势里的统计特性,甚至拿来进行股价预测,成功的预测模型可以帮助人们获得大笔利润。
例如,金融学里都会教的ARMA模型(你可以看下参考资料),就做了如下假设:今天的股票收盘价,会受到前面几天股票收益的影响(线性关系),在加上一个白噪声函数。这就是随机序列的“时相关”重要特性的体现。这只是个简单的例子。
随机过程,在工程学,金融学,经济学等学科里,都有很重要的地位,努力学好它吧。