摘要
滑雪场问题
随着单板U型滑雪项目的普及,人们对观看和欣赏该项目的比赛水品的要求也越来预告,这就要求运动员在空中做出更多和更高难度的空翻转体、前刃起飞转体、后手抓前板、后刃起飞转体、前手抓前板等漂亮动作,而这些动作的完成都取决于腾空的高度。而影响腾空高度的一个主要因素是滑雪场的形状。针对上述问题,本文以半管状的滑雪场其横切面分别是半圆的一部分和幂函数曲线进行了研究。在仅考虑一个滑板运动员所能达到的最大垂直间距为目标,根据能量守恒原理,分别对横切面是部分半圆和幂函数曲线:y=axk建立了微分方程数学模型,然后以某一个具体运动员为例,在一定的合理假设下给出了它们各自具体的形状。随后,又以运动员在空中空翻转体为目标,在保持一定的高度的前提下,使其旋转的角度最大化建立目标函数,通过对上述曲面进行修改:对该曲面的高度适当降低,再在其上边沿加一个稍向下倾斜的平面,通过模型的建立,以一个具体的运动员的比赛数据,验证了该模型的正确性。最后,为了使该模型具有实用性,对模型从四个方面进行了取舍:建造的U型槽,应有一定的倾斜;在底部加上一个适度宽的平面;在槽上边沿加一个适度宽的平台和在平台的外边沿加一个适当高的护栏。并给出了建造U型槽的最短长度。