哈密顿原理怎么来
L=T-V为拉格朗日函数,T为系统的动能,V为它的势函数。哈密顿原理[1]可叙述为:拉格朗日函数从时刻t1到t2的时间积分的变分等于零。它指出,受理想约束的保守力学系统从时刻t1的某一位形转移到时刻t2的另一位形的一切可能的运动中,实际发生的运动使系统的拉格朗日函数在该时间区间上的定积分取驻值,大多取极小值。由哈密顿原理可以导出拉格朗日方程。哈密顿原理不但数学形式紧凑,且适用范围广泛。如替换L的内容,就可扩充用于电动力学和相对论力学。此外,也可通过变分的近似算法,用哈密顿原理直接求解力学问题。