上面的是质心公式,下面的是形心公式。
面的形心就是截面图形的几何中心,质心是针对实物体而言的,而形心是针对抽象几何体而言的,对于密度均匀的实物体,质心和形心重合。
只有一个对称轴的截面,其形心一定在其对称轴上,具体在对称轴上的哪一点,则需计算才能确定。
建坐标:形心位置:(Xc,Yc);
Xc=[∫a(ρxdA)]/ρA=[∫a(xdA)]/A=Sy/A;
Yc=[∫a(ρydA)]/ρA=[∫a(ydA)]/A=Sx/A;
我们把均匀平面薄片的重心叫做这平面薄片所占的平面图形的形心。
质量中心简称质心,指物质系统上被认为质量集中于此的一个假想点。
质量中心的简称,它同作用于质点系上的力系无关。
设 n个质点组成的质点系 ,其各质点的质量分别为m1,m2,…,mn。若用 r1 ,r2,……,rn分别表示质点系中各质点相对某固定点的矢径,rc 表示质心的矢径,则有rc=(m1r1+m2r2+……+mnrn)/(m1+m2+……+mn)。当物体具有连续分布的质量时,质心C的矢径 rc=∫ρrdτ/∫ρdτ,式中ρ为体(或面、线)密度;dτ为相当于ρ的体(或面 、线)元 ;积分在具有分布密度ρ的整个物质体(或面、线)上进行。
由牛顿运动定律或质点系的动量定理,可推导出质心运动定理:质心的运动和一个位于质心的质点的运动相同,该质点的质量等于质点系的总质量,而该质点上的作用力则等于作用于质点系上的所有外力平移 到这一点后的矢量和 。