割圆术
南北朝时代的数学家祖冲之利用割圆术进一步得出精确到小数点后7位的π值(公元466年),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7,这一纪录在世界上保持了一千年之久。
为纪念祖冲之对中国圆周率发展的贡献,将这一推算值用他的名字被命名为“祖冲之圆周率”,简称“祖率”。
扩展资料:
1.圆周率,一般以π来表示,是一个在数学及物理学普遍存在的数学常数。它定义为圆形之周长与直径之比。它也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键。分析学上,π可定义为是最小的x>0使得sin(x)=0。
2.中国数学家刘徽在注释《九章算术》时(公元263年)只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术,其中有求极限的思想。
3.在历史上,有不少数学家都对圆周率作出过研究,当中著名的有阿基米德、托勒密、张衡、祖冲之等。他们在自己的国家用各自的方法,辛辛苦苦地去计算圆周率的值。下面,就是世上各个地方对圆周率的研究成果。
参考资料: