spss使用VIF判断多重共线性标准是10,超过10,说明有共线性,越大共线性越大。
多重共线性,计算自变量的偏回归系数时矩阵不可逆。其表现主要有:整个模型的方差分析结果与各个自变量的回归系数的检验结果不一致,专业判断有统计学意义的自变量检验结果却无意义,自变量的系数或符号与实际情况严重不符等。
检验方法主要有:容忍度(Tolerance)和方差膨胀系数(Variance inflation factor,VIF)。VIF的取值大于1。VIF值越接近于1,多重共线性越轻,反之越重。当多重共线性严重时,应采取适当的方法进行调整。
扩展资料
VIF判断多重共线性原理
Ri为自变量 对其余自变量作回归分析的负相关系数。方差膨胀系数VIF越大,说明自变量之间存在共线性的可能性越大。
如果方差膨胀因子超过10,则回归模型存在严重的多重共线性。又根据Hair(1995)的共线性诊断标准,当自变量的容忍度大于0.1,方差膨胀系数小于10的范围是可以接受的,表明自变量之间没有共线性问题存在。
参考资料来源:百度百科—方差膨胀系数
参考资料来源:百度百科—方差膨胀因子