他们的公式很多,这里介绍体积和面积的公式
一、长方体
1、表面积
因为相对的2个面面积相等,所以先算上下两个面,再算前后两个面,最后算左右两个面[5] 。
设一个长方体的长、宽、高分别为a、b、c,则它的表面积为S = (ab+bc+ca)×2,也等于2ab+2bc+2ca,还等于2(ab+bc+ca);
公式:长方体的表面积=长×宽×2+宽×高×2+长×高×2,或:长方体的表面积=(长×宽+宽×高+长×高)×2。
2、体积
长方体的体积=长×宽×高。设一个长方体的长、宽、高分别为a、b、c,则它的体积:
。因为长方体也属于棱柱的一种,所以棱柱的体积计算公式它也同样适用。长方体体积=底面积× 高,即(S是底面积)
二、正方体
1、表面积公式
因为6个面全部相等,所以正方体的表面积=底面积×6=棱长×棱长×6
2、体积
正方体的体积(或叫做正方体的容积)=棱长×棱长×棱长;设一个正方体的棱长为a,则它的体积为:V=a×a×a
先取上底面的面对角线,计算,得到,根号2倍棱长
这根面对角线和它相交的棱,就是垂直于上底面的棱,
又可以组成一个直角三角形,而这个直角三角形的斜边就是体对角线,
根据勾股定理,得到,体对角线=根号3倍棱长。
正方体属于棱柱的一种,棱柱的体积公式同样适用
(要正确区分体对角线和面对角线,面对角线是平面几何中的概念而体对角线是立体几何中的概念)
也可以用正方体的体积=底面积×高计算
同时,正方体的体对角线也等于:体对角线的平方=长的平方+宽的平方+高的平方
扩展资料
长方体特征
(1) 长方体有6个面。每组相对的面完全相同。
(2) 长方体有12条棱,相对的四条棱长度相等。按长度可分为三组,每一组有4条棱。
(3) 长方体有8个顶点。每个顶点连接三条棱。三条棱分别叫做长方体的长,宽,高。
(4) 长方体相邻的两条棱互相垂直。
正方体特征
〔1〕正方体有8个顶点,每个顶点连接三条棱。
〔2〕正方体有12条棱,每条棱长度相等。
(3)正方体有6个面,每个面面积相等。
(4)正方体的体对角线: \sqrt{3}a
参考资料百度百科——长方体