求二次曲面过在点处的切平面及法线方程,谢谢

2022-03-17 社会 436阅读

1、二次曲面过在点处的切平面及法线方程如下:

f(x,y,z)=x^2+2y^2+3z^2-36,

则fx'=2x=2,

fy'=4y=8,

fz'=6z=18,

切平面方程为2(x-1)+8(y-2)+18(z-3)=0,

法线方程为(x-1)/2=(y-2)/8=(z-3)/18。

2、切平面及法线方程计算方法:

对于像三角形这样的多边形来说,多边形两条相互不平行的边的叉积就是多边形的法线。

用方程 ax + by + cz = d 表示的平面,向量(a,b,c)就是该平面的法向量。

S 是曲线坐标 x(s, t)表示的曲面,其中 s 及 t 是实数变量,那么用偏导数叉积表示的法线为。

曲面 S 用隐函数表示,点集合(x,y,z)满足 F(x,y,z)=0,那么在点(x,y,z)处的曲面法线用梯度表示为。

扩展资料:

1、二次曲面过在点处的切平面及法线方程例题解释

zx=2x;zy=6y

所以,(1,1,3)处的法向量为:(zx,zy,-1)=(2,4,-1);

切平面方程为:2(x-1)+4(x-1)-(x-3)=0;

即为:2x+4y-z-3=0;

法线方程为:(x-1)/2=(y-1)/4=(z-3)/(-1);

2、切平面及法线方程计算温馨提示

如果曲面在某点没有切平面,那么在该点就没有法线。

例如,圆锥的顶点以及底面的边线处都没有法线,但是圆锥的法线是几乎处处存在的。通常一个满足Lipschitz连续的曲面可以认为法线几乎处处存在。

参考资料来源:百度百科-法线

声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com