运算律包括交换律、结合律、分配律
加法交换律:a+b=b+a;
乘法交换律:a×b=b×a;
加法结合律:a+b+c=(a+b)+c=a+(b+c);
乘法结合律:(a×b)×c=a×(b×c);
乘法分配律:a×(b+c)=a×b+a×c;
左分配律:cx(a+b) = (cxa)+(cxb);
右分配律:(a+b)xc = (axc)+(bxc)。
扩展资料:
运算律既是重要的数学规律,也是数学运算所固有的性质。
1、根据运算的定义可以推导出运算律。
运算律是通过对一些等式的观察、比较和分析而抽象、概括出来的运算规律。这个过程属于由具体到抽象、由特殊到一般的归纳,体现了合情推理的基本特点。
但从知识逻辑来说,运算律与相关运算的定义是相伴相生的。数学家在定义四则运算的同时即需考虑“能否由定义出发合乎逻辑地推导出相应的运算律”。
2、运算定义和运算律是探索相关计算方法的依据。
完成运算、得出结果的方法、程序或途径,通常叫做运算方法或计算方法。把运算方法所要求的操作程序和要点用相对准确、规范且比较容易理解的文本语言表述出来,或者将当前运算归结为学生早先已经掌握的相关运算,就是所谓的“运算法则”。
参考资料来源:百度百科-运算律