谓全息照相,就是将激光技术用于照相,在底片上记录下物体的全部光信息,而不像普通照相仅仅是记录物体的某一面投影.因此当底片上的物体重现时,在观看者的眼里显得异常逼真,它产生的视觉效应,完全与观看实物时一模一样.
全息照相的原理,简单地说,主要利用了激光颜色纯这个特点.其实,关于全息照相的理论早在1947年就由英国科学家伽波提出来.但直到亮度高、颜色纯、相干性好的激光问世后,才真正拍摄出全息照相.
全息照相与立体照相是两回事.尽管立体彩色照片看上去色彩鲜艳、层次分明,富有立体感,但它总归仍是单面图像,再好的立体照也代替不了真实的实物.比如,一个正方形木块的立体照,不论我们怎样改变观察角度,横看竖看,看到的只能是照片上的那个画面.但全息照就不同了,我们只要改变一下观察角度,就可以看到这个正方块的六个方面.因为全息技术能将物体的全部几何特征信息都记录在底片上,这也是全息照相最重要的一个特点.
全息照相的第二个特点是能以一斑而知全貌.当全息照片被损坏,即使是大半损坏的情况下,我们仍然可以从剩下的那一小半上看到这张全息照片上原有物体的全貌.这对于普通照片来说就不行,即使是损失一只角,那只角上的画面也就看不到了.
全息照的第三个特点是在一张全息底片上可以分层记录多幅全息照,而且在它们显示画面时不会互相干扰.正是这种分层记录,使得全息照片能够存储巨大的信息量.
全息照片为什么会有这样的一些特点?为什么普通照片没有这些特性呢?这要从拍摄的原理谈起.
假如用一束激光照明一个微小颗粒.从小颗粒上反射出来的光波基本上是不断向外扩大的球面波.我们向小颗粒看去,是明亮的一点.用照相机为这小颗粒照相时,光波通过镜头在底片上形成一个亮点,这一点的亮度与小颗粒反射出来的光强有关.照相底片可以记录下这一点的亮点,但记不下小颗粒在三维空间的位置,印出来的照片上也只有一个亮点.看起来没有一点立体感觉.拍摄全息照片时,不用照相镜头,而是把一束发出平面波的激光和小颗粒反射出的球面波一起照到照相底片上.整个底片都受到光照,它记录下的不是个亮点,而是一组同心圆,当同心圆间隔很小时,看起来,就像是用刀把一个圆萝卜切成一片片薄片,叠在一起,成为一组同心环那样.底片经冲洗后,放到原来的位置,再用拍摄时那束发出平面波的激光,以拍摄时的角度照到底片上,我们可以看到原来放置微小颗粒的位置上有一个亮点.注意!这个亮点在空间,而不是在底片上,我们看到的光就像是从这个亮点发出来的.所以,全息照片记录下来的不仅是一个亮点,还包含亮点的空间位置,或者说记下从亮点发出的整个光波.全部奥妙就在于这种新奇的拍摄方法,在于这一束平行(平面波)激光束.这一激光束,我们称之为参考光束.
因此,任何物体实际上都可以看成是无数个明暗不同的亮点组成的立体图像.用上面的拍摄方法拍成的全息照片就是无数个同心圆组成的复杂图形,看起来也是灰暗的一片.同样,这张全息照片不仅记录了物体各点的明暗,还记下了各点的空间位置.当用参考光束照射冲洗后的底片时,我们看到的光就像是从原物体上发出来的.所以,我们说它记录了有关物体发出的全部光信息,全息照片的名称就是因此而得来的.不过激光全息照片只有在激光照射下,眼睛看上去才有立体的形象,而激光器是一种价格较贵的设备,一张照片要配备一架激光器,除了科研部门、专门的场所中有可能设置外,要普遍、广泛地应用是不可能的.针对这个缺点.科学家不断研究,终于发明了一种在白炽灯光下也能看到全息景象的全息照片.称为白光全息或彩虹全息.
激光全息照的底片,可以是特种玻璃,也可以是乳胶、晶体或热塑等.一块小小的特种玻璃,可以把一个大型图书馆的上百万册藏书内容全部存储进去.
如果留心一下报纸上的照片,就能发现它们是由一个个小点子组成的.每一个小点子叫做一个像素,它的密度大约是每平方毫米内有几个点.而全息照相用的特种玻璃膜层厚约10微米,像点密度每平方毫米内在2000个点以上.在这种底片上,每平方毫米的地方内,可以装下一张310平方厘米的大照片.在一小块5毫米见方的薄膜上就能装下一本200页厚的图书.
全息照相机的发明,主要意义不在于照相,它作为激光技术的一个方面,在工业、农业、科研等领域具有广泛的实用价值.
从照相方面讲,这是一种全新的技术.因为全息照片有逼真的立体感,用它来代替普通照片有独特的效果.在国外,已有人用全息照片做成书的插页,做成商标,做成立体广告;博物馆用它来代替珍贵文物展出.国外有一家机床制造公司,到另一个国家开商品介绍会,就用全息照片代替实物办了一个机床展览会.展览厅里全部是各种机床的全息照片,这些全息照片看起来和真的机床并没有什么两样,反而更加引起参观者的兴趣.
构思精巧的全息照片也是一件精美绝伦的艺术品.美国和法国等国家都有全息照片博物馆,集中了全世界最精美的作品.
全息照相还可以将珍贵的历史文物记录下来,万一有文物古迹遭到严重破坏,即使荡然无存,我们仍然可以根据全息照相重建.比如像北京圆明园那样的名胜,当年被八国联军焚毁,现在虽然打算重建,因为不知道整个面貌,就难以完全恢复.如果全息照相提早100年发明的话,事情就好办了.
从立体景象的全息照片得到启发,科学家想到了全息电影和全息电视.实验性的全息立体电影已经在前苏联出现.放映这种电影时,观众看到的景象并不在银幕上,而是在观众之中,使人有身临其境的真实感觉.至于全息电视,因为它涉及的技术问题比较复杂,目前还在研究.1982年,德国的电视台播送的立体电视,并不是激光全息电视,它的原理和普通立体电影一样,观看时要戴一副特殊的眼镜.预计到本世纪末,电影和电视又要换代了;到那时,人们的文化娱乐生活,可能会由于激光全景立体电影和激光立体电视的出现而变得更加丰富多彩.
全息照相的另一项重要应用是制作可以在一些特殊场合代替玻璃的全息光学元件.这种特殊的光学元件具有加工方便、小巧、轻、薄等优点.一个凹透镜可以使光束发散,一束平行光波照上去变为球面波;我们前面谈到的用小颗粒拍摄的全息照片也会把平行光参考光束变为球面波;这样的全息照片也就是一个特殊的凹透镜.用类似的方法可以制作出凸透镜、柱面透镜等光学元件.这种元件和纸一样薄,一样轻,还不会碎.现在已经有用全息光学元件做成的望远镜,它的厚度和一般近视镜片差不多.还有人报道用全息光学元件做成窗玻璃.这种奇异的窗玻璃不会影响人的视线,却能反射大量的阳光,兼有窗帘的功能;更有趣的是,可以把它反射的阳光集中到装在窗檐下的一排太阳能电池上,转化为电能,供室内使用,真是一举三得.
全息照相技术有明察秋毫的本领.因为全息照片能精确地再现原来被拍摄的物体,我们可以用它作标准检查原物有没有变化;事实上只要有1微米的变化,就可以用全息照相技术检查出来.科研生产部门,还让激光全息摄影来担任成品内在质量的逗检验员地.检验时,给被检物加上一点压力或加点热;如果物体内部有裂痕、微孔,它的表面就会发生相应的变化.尽管这种变化的程度极为细微,肉眼根本无法觉察,但在全息摄影这对逗火眼金睛地下面,所有这些瑕疵、隐患,统统暴露无遗.这种方法除了可以精密地检查内在质量外,还有对被检物丝毫无损的的优点,特别适用于贵重物品,例如珍贵文物、古代雕塑品的检测.希腊科学家曾用这种方法查出古代塑像受风化的程度.生产上用这种方式检查精密零件、飞机蒙皮、飞机轮胎的内在质量.在国外的飞机轮胎工厂里,已经起用了激光全息照相逗检验员地.这种方法还被用来作生物学研究,比如研究脑壳受力时产生的形变,研究蘑菇的生长速度等等.
还在发展当中的是全息存贮技术.我们在谈全息照相特点时提到过的存贮信息,也就是记录信息的能力.从理论上计算,用光盘存贮信息,每平方厘米可以存贮的信息约为106位,而用全息存贮,每平方厘米可以存108位,高100倍!而且读出信息的时间只有百万分之一秒!
现在,已经可以把信息存到材料里面去,全息照相用的材料不是一薄层底片,而是整个一块晶体可以存入10万册图书,一个图书馆只要保存几块记录晶体就可以.这看来带有一点幻想色彩,然而是有希望做到的.更重要的是全息存贮的发展将会促进计算机的发展、换代.
一般的全息照片,只能一张一张制作,价格也很高;除了科研上的使用以外,只能当作高级艺术品.80年代出现了一种新的压印全息技术.用这种方式制造全息照片,先要做成一块金属的微浮雕板;把它当作印板,在镀有金属膜的特殊纸张上压出全息照片.这比印邮票还要方便,可以大批生产,成本大大降低,应用面也越来越广.
这种全息照相不仅有立体感;在阳光或灯光下呈现多种色彩,衬在银白色的金属背景上,显得更为绚丽.人们用它来装饰书刊、玩具、旅游纪念品,很具魅力.
这种全息照相也包含着丰富的信息,而且完全取决于制作时采用的景物和拍摄方式,就像加了密码一样.没有原始印版,无法复制.因而,它成为防止伪造的有效手段.已经在纸币、、磁卡及外交签证等凭证上出现各种全息标识以防伪造.在我国,也已有不少厂商采用全息照相商标来防止有人伪造商标,欺骗顾客.
值得一提的是,全息照相这项重大技术成就,却是在与普通摄影毫不相干的科研领域内发明的.发明者加伯研究这一课题的目的是想要提高电子显微镜的分辨率.他设计了这种新的成像方法,并于1948年公开发表在科学杂志上.但是,当时没有激光这样好的单色光,技术上也有一些困难,加伯并没有取得成效,他的论文也没有人重视.
直到十多年后的1964年,因为出现了激光器这种理想的光源,全息照相技术才开始发展起来.很快,全息照相术便成为一种用途十分广泛,并且具有无限发展潜力的新技术.加伯因为首创全息照相的理论,荣获1971年诺贝尔物理学奖.他本人由此而被世界公认为逗全息照相之父地.