猎鹰重型运载火箭技术特点有:
1、多发动机组合
“猎鹰重型”运载火箭一子级采用27台Merlin-1D+发动机,是当前世界上发动机数目最多的火箭。在传统设计理念中,为避免采用多发动机导致复杂的耦合振动、火箭推重比下降、系统可靠性降低等问题,火箭一子级发动机数目通常控制在10台以内。历史上曾有N-1火箭一子级采用了30台发动机,但其四次发射均以失败告终。“猎鹰重型”运载火箭一子级大胆采用了挑战传统的27台发动机方案,但采用先进的设计手段确保了其高可靠性。
2、动力冗余
“猎鹰重型”运载火箭所采用的动力冗余技术是指在其主动段飞行过程中,当1台或多台发动机发生故障,在不影响其余发动机正常工作的情况下,箭载控制系统对故障发动机实施紧急关机、故障隔离,继续执行并完成主发射任务的一项技术。该技术极具挑战性,涉及的主要关键技术包括:一是动力系统故障诊断隔离技术;二是弹道在线规划与重构技术。
3、轻质箭体结构
“猎鹰重型”运载火箭采用了新型轻质箭体结构技术,氧箱利用铝锂合金壳体横造技术既能保证安全又可大幅降低结构重量,燃料箱利用箱壁桁条以及环形结构设计增加其承载能力。整流罩、助推头锥采用的复合材料,确保了质量最轻。该火箭还按照NASA载人发射标准进行了结构安全裕度设计。与其它火箭采用25%的结构安全裕度不同,“猎鹰重型”火箭是按比飞行载荷高出40%的结构安全裕度来设计的。尽管结构安全裕度高于其它火箭,但“猎鹰”重型运载火箭火箭捆绑助推器的重量比高达30,优于史上任何火箭。
4、重复使用
“猎鹰重型”运载火箭一子级各个通用芯级均安装有栅格舵,可用于辅助箭体再入过程中姿态稳定控制,并提供一定的气动阻力用于减速。各个通用芯级的着陆装置为四个支腿,在火箭发射后的上升段及再入过程中收拢于箭体,当火箭一子级减速即将着陆于地面或海上平台之前展开;支腿由液压装置执行收拢展开,并具有展开后锁死的能力;支腿主要由碳纤维及铝合金蜂窝板构成,轻质且能满足载重需求;支腿带有液压减震器,可进一步减缓垂直着陆带来的巨大冲击。
5、发动机节流
为保证一子级助推器分离时芯级仍有最多的推进剂,达到延长芯级飞行时间、提升火箭运载能力的目标,“猎鹰重型”运载火箭在设计之初拟采用在一子级助推器与芯级之间通过交叉管路连接实现推进剂共用的推进剂交叉输送技术。该技术的实现难度较大,目前仍有许多难点问题待解决。
在首飞任务中,“猎鹰重型”运载火箭主要充分利用一、二子级发动机的节流变推力能力,来替代推进剂交叉输送技术实现其拟达到的目标。该方式与采用推进剂交叉输送技术相比可减小火箭设计复杂性,降低风险发生概率。
6、牵制释放
“猎鹰重型”运载火箭采用了牵制释放技术,在火箭竖立发射台点火起飞前,通过集成在发射台的牵制释放系统牵制住火箭,同时让火箭发动机竖立发射台低工况工作一段时间,对发动机主要敏感参数进行采集和评估分析,快速判断发动机工作状态,以提升火箭发射可靠性。
7、冷分离
重型猎鹰火箭的助推器分离和一二级分离均采用的无损式“冷分离”模式(主要为冷氮喷射或机械式推杆)也是一大亮点,其相较于更为传统的爆炸式“热分离”无疑会更具优势。