int isprime(int m)
{
int i;
for(i=2;i
return 0;
else
return 1;
}
该算法的时间复杂度O(n)。
可以改进一下,根据如果一个数是合数,那么它的最小质因数肯定小于等于它的平方根。用反证法可以证明一下。假设x是n的最小质因数,则存在n/x=p。p>x,x*p=n。如果x不小于等于它的平方根,则x*x>n,而p>x,故x*p>n,假设不成立。合数是与质数相对应的自然数。一个大于1的自然数如果它不是合数,则它是质数。也就是说如果一个数能被它的最小质因数整除的话,那它肯定是合数,即不是质数。所以判断一个数是否是质数,只需判断它是否能被小于它开跟号后的所有数整除,因此,这样做的运算少了很多,降低了时间复杂度。