找17世纪前后数学发展的重大事件,重要的科学家(如开普勒,伽利略,笛卡尔,牛顿,莱布尼茨,欧拉等)
笛卡儿 (Descartes) 出生年代: 1596~1650 国籍: 法国 著作: 《论世界》《方法论》《形而上学的沉思》及《哲学原理 》《几何学》 生平: 笛卡儿是法国著名的哲学家、数学家、物理学家及自然科学家。他於 1596年3月31日出生於图伦一贵族家庭。童年就读於拉弗莱什公学时,因体弱多病,被允早晨在床上读书,渐渐养成一种喜爱宁静,擅於思考的习惯。在校内更结织了密友梅森。1612年,他到巴黎普瓦捷大学供读法律,四年后获颁博士学位,并成为律师。当时法国社会的有志之士,不是致力宗教,便是献身军事,这种风气甚为盛行,这驱使笛卡儿於1618年往荷兰从军。服役期间,他仍对数学感兴趣。某日休息,他在街上散步时受一荷兰招贴所吸引,但因不懂荷兰文,於是请身边的人译成拉丁文或法文。恰巧这人是多特学院院长毕克门。经此翻译,笛卡儿才得悉这是一张当时数学家所下的「挑战书」,广徵上列难题答案。笛卡儿竟在数小时内求得答案,使毕克门大为佩服 。1621年,笛卡儿脱离军队返法,但适逢内乱,於是游历於丹麦、德国、意大 利等地。直至1625年才返回法国,与梅森等人一起研 讨数学。1628年移居荷兰,并通过数学家梅森神父,与欧洲主要学者保持密切联络。闲时更从事数学、天文学、物理学、化学及生理学等领域的研究。他所有著作几乎全是在荷兰完成的。他的主要著作有指导哲理之原则;〔1628年写成〕,以哥白尼学说为基础之《论世界》1634年完成,但因伽利略受教会迫害而未出版〕,《方法论》1637年6月8日於莱顿匿名出版,《形而上学的沉思》及《哲学原理 〔1644年出版〕。 1649年冬,他应邀到斯德哥尔摩为瑞典女皇克利斯提娜授课。最后,这位以创立解析几何而闻名的数学家因肺炎於1650年 2月11日在当地病逝。笛卡儿早在读书时期,已怀疑和反对统治欧洲思想界的经院哲学。多年来的游历与多方面的科学研究,加上与社会各阶层人士之交往及不断的自我反思,使他坚信必须抛弃经院哲学,探求正确思想方法,创立为实践服务的哲学,才可成为自然的主人与统治者 」。 他认为数学是其他一切科学之理想与模型,提出了以数学为基础,以演绎法为核心的方法论及认识论,成为西方近代哲学创始人之一,对后世的哲学、数学及自然科学起了巨大作用。而且他还一直为捍卫他的学说而和教会及其他反对势力抗衡。此外,他於1637年以法文写成的《方法论》〔最早的一部著作〕,附设三短论及一篇序言分别为:《折光学》、《气象学》、《几何学》及《科学中正确运用理性和追求真理的方法论》。当中以《几何学》为代表作,亦因此确立了他於数学史上之地位。这亦是他唯一的数学论著。全书共分三卷,内容分析了几何学与代数学的优劣,表示要寻求另一种包含两者好处而没有两者劣处的方法。在卷一中,他把几何问题化作代数问题,提出几何问题的统一作图法:以单位线段及线段的加、减、乘、除、开方等概念,将线段和数量联系起来,通过线段间的关系设立方程。在卷二中,他以这新方法解决帕普斯问题时,在平面上以一直线为基线,为它规定一起点及选定与之相交的另一直线,三项分别为 x轴,点及 y轴,形成一个斜座标系。 此时,该平面上的任何一点位置均可以〔x,y〕唯一地表示。帕普斯问题便化为一含两个未知数的二次不定方程。他指出方程的次数与座标系的选择无关,因此可依方程的次数 将曲线分类。 在卷三中,他指出方程可有与它的次数一样多的根,且提出笛儿符号法则:方程正根的最多个数等同其系数变号的次数;其负根〔假根〕的最多个数等同符号不变的次数。笛卡儿还以a,b、c,……表示已知量及x,y,z,……表示未知量去改进韦达所创的符号系统。《几何学》提出了解析几何学之主要思想与方法,这标志著解析几 何学之诞生。笛卡儿毕生专注於各项知识部门的研究,为人类的科学宝库带来丰厚的成果,对后世的研究影响深远。 费马 (Fermat Pierre de) 出生年代: 1601~1665 国籍: 法国 生平: 费马是法国数学家费马於1601年8月17日在法国南部德洛马涅出生。早年在家乡受教育,后来进入图卢兹大学攻读法律,毕业后任职律师,自1631年起担任图卢兹议会议员。其间他於空闲时间专研数学,并常以书信与笛卡儿,梅森等名学者交往,讨论数学问题。他饱览群书,精於数国的文字,掌握多门科学的知识。虽然年近30才认真注意数学,但成就累累。最后於1655年在卡斯特尔逝世。他生前由於性情淡泊,为人谦逊,因此较少发表论作,大多成果只留在手稿,通信,或书业之空白处。他的儿子在1679年将其遗稿整理成书在图卢兹出版。费马与笛卡儿同为17世纪上半期的首要数学家,近代数论中,在一个世纪后的欧拉之前,无人能与之匹敌。他独立於笛卡儿发现了解析几何的基本原理。由於所设想求曲线的切线及其极大极小点的方法而被认为是微积分的先驱。通过了巴斯卡的通信,成为了概率论的共同创办人之一。在1629年,他开始重写几何学家阿坡罗尼乌斯久以失传的<<平面轨迹>>,不久发现透过座标将代数用於几何,轨迹的研究将会易於进行。在光学中,费马应用了极大极小的方法,揭示了光线的折射定律同他的"最短时间原理"相吻合。受到<<算术>>一书的影响,费马在数论得到很多新的结果。最出色的结果之一是4n+1的素数均能唯一的表示为两个平方数之和。费马所提出的定理中,有两个分别被称为大定理与小定理,前者又称为最后定理。小定理是费马给他的朋友福兰尼可的信中提出的,其内容是p为质数,a p互质,则a的p次方减a能被p整除。大定理是---若n2则方程式没有整数解。费马在书中的空白处写下了这个定理,也发现了奇妙的证明方法,只是空白处不够而未将其写下。由於他在数论,解析几何,概率论,等方面的贡献良多,被后世誉为"业余数学家之王" 。 资料出处: 数学史-数学思想的发展(上册)P296和网站窝狼居( www.mcjh.kl.edu.tw/usr/jks/jks.htm )罗伯勃 (Gilles Persone de Roberval) 出生年代: 1602~1675 国籍: 法国 生平: 罗伯勃是法国数学家。在曲线几何上有重大发展。1632年任巴黎法兰西学院教授。研究了却定立体的表面积和体积的方法。罗伯勃常与当时的数学家进行科学论战,包括数学家笛卡儿。罗伯勃在他的(Trait des indivisible) (虽然迟至1693年才发表,才1634年起就有其纪录)中,将阿基米德在螺线上求切线的方法一般化,与阿基米德一样,罗伯勃把曲线看成动点的轨迹,它受两种速度的作用,例如从炮口上射出的抛物体,受到水平速度,和垂直速度的作用,其合成速度为边的长方形之对角线;罗伯勃把这种合成向量当作曲线在P点之切线;根据托里拆利的解说,罗伯勃德方法是利用伽利略所论断的一个定理:水平速度和垂直速度是互相独立的。将切线当作合成速度的说法,远叫希腊时代将切线当作与曲线相触的直线为复杂,前者成处理许多后者不能处理的问题。再将纯几何与动力学联结的作用上,它是一个非常重要的角色;在伽利略之前,纯几何与动力学是各自为政的。换句话说,这种切线观使数学园地实体化,因为它是以物理观念来定义切线。但有许多曲线和运动无关,此时切线就无由而生,所以需要以其他的方法来寻求切线。 资料出处: 数学史-数学思想的发展(上册)P371