如何在 Ricequant 上实现策略

2020-07-10 财经 79阅读

你好!以 [单股票均线策略]  的代码实现为例说一下如何在Ricequant上实现策略吧。

1  确定框架:

[单股票均线策略] 的主要策略框架: 5 日均线高于 30 天均线,则全仓买入股票 5 日均线低于 30 天均线,则卖出所持股票。从我们日常交易的角度,一般交易者的行为可以拆分以下两部分:

1.1 选择标的(初始化):

#在交易之前,我们通常会先选定要交易的股票池或者单个股票

1.2 交易(每天盯盘)

#我们会观察该股票的五日均线和 30 日均线,并进行比较
#如果该股票的五日均线在 30 天均线以上,则全仓买入股票
#如果该股票的五日均线在 30 天均线以下,则全仓卖出(空仓)

那么程序中,我们是怎么做的呢?

先看看 Ricequant 平台中对应的代码框架会是怎么样的吧:

def init(context):
#程序的初始化,预设股票池、设置参数和变量。 只运行一次
def handle(context, bar_dict):
#从回测的开始日期至结束日期,根据选择的频率(日、分钟)循环运行

对照策略思路 及 Ricequant 代码框架,你会发现我们可以很轻松地把 两者结合起来

以上框架也是 Ricequant 平台的最基本也最主要的框架,也就是初始化循环 - 根据选择的频率(日、分钟)循环运行


2 初始化:

选择标的:本策略的交易股票设定为 300059 ”东方财富“。

def init(context):
    context.stock = "300059.XSHE"   # 存入目标股票 [东方财富 ]

延伸阅读:

1 在 init 中实现程序的初始化,例如存入目标股票池,设置滑点、基准等参数以及设置其它变量。 context 是一个全局的容器,你可以通过它设置任何全局变量并初始化:如 context.stock 将会在后面代码所被调用到。

2 代码中 # 代表注释,作为代码说明,执行时会被跳过而不为程序所运行。

3 如何填写股票代码:你会发现策略代码中 股票代码后带有后缀,那么它们分别代表什么呢?

后缀为

XSHE 代表在深交所上市交易的股票

XSHG 在上交所上市交易的股票

例子:

300059.XSHE  为深交所上市的东方财富

600000.XSHG  为上交所上市的浦发银行

我们的代码编辑器还提供了非常便利的股票代码自动寻找和补全功能,在 Windows 中你可以用 ctrl+i , Mac 系统你可以用 cmd+i 激活证券代码自动补全功能。如下图:

3 获取均价:

我们分别获取该股票 5 日和 30 日的均价

# 用法:变量 = bar_dict[股票代码].mavg(天数, frequency='day')
# 获取近五日股票收盘价均价,命名为 fast
    fast = bar_dict[context.stock].mavg(5, frequency='day')
#  同上,获取近二十日的收盘价均价,命名为 slow :
    slow = bar_dict[context.stock].mavg(30, frequency='day')


4 判断买卖条件:

获得均价数据之后,我们就可以进行一个判断决定是否买卖了:

    if fast>slow: # 若快线在慢线之上则用所有现金买入该股票
              #买入操作
              
    elif fast             #卖出操作

在判断之前,我们还漏了一步,那是什么呢?就是要知道我们有多少现金,那么在程序中是如何获得现金的呢?我们使用以下代码

# 用法:变量 = context.portfolio.cash
cash = context.portfolio.cash #取得当前的现金量,命名为 cash


5 买入 /卖出:

在判定买卖的条件成立之后,我们会对股票进行买入或者卖出的操作:

#用法 order_value(股票代码,买卖金额)   金额为正则为买入,负数则为卖出
#将所有现金买入 300059 东方财富
order_value(context.stock, cash) 
#用法: order_target_value(股票代码,目标持仓比例)   比例在 1 与 0 之间
#此处将持仓比例调整为 0 ,则等同于全部卖出
order_target_percent(context.stock, 0)

6 策略回测

以上,我们用几行代码就把策略的框架完整地搭建起来了,最终的完整代码为:

def init(context):  #初始化
    context.stock = "300059.XSHE"         #存入要交易的股票代码
def handle_bar(context, bar_dict):        
#每日循环运行  
#获取 30 日均线
    slow = bar_dict[context.stock].mavg(30, frequency='day')   
#获取 5 日均线    
    fast = bar_dict[context.stock].mavg(5, frequency='day')   
    cash = context.portfolio.cash                  
    #获取持有现金金额    
    if fast>slow:                                  
    #判定买入条件        
        order_value(context.stock, cash)         
        #买入目标股票    
    elif fast        order_target_percent(context.stock, 0)   
        #卖出目标股票

写完了策略,那么我们接下去做什么呢? 先对我们的策略进行一次历史回测,看看它的历史表现是如何吧。

在策略编辑页面右上方,选择从 2015 年 1 月 4 日至 2016 年 10 月 4 日,用资金 10 万元进行日回测吧,请点击 运行回测

我们可以看到回测详情中有精致的图表,详细的各项风险收益指标、以及持仓、落单等详情辅助你进一步了解你的策略的表现。

到这里,一个完整的从 [构建策略思路] 到 [策略代码编写] 到 [回测结果检验] 的流程就结束了。

声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com