音乐与数学之间的关系是怎样体现的?二者又是如何相互影响的?

2020-06-26 娱乐 114阅读

古希腊时期关于音乐和比例之间的关系,题主自己也在问题描述中说到了,我就不说了。其实早期的古希腊包括中世纪时期的作曲家和理论家,都是被当做科学家来看待的。早期的音乐大概有两个大的分类,"music as theory"和"music as practice“,前者从纯粹的理论方面来研究音乐,后者是从表演方法的角度来研究。前者的研究,很多都是和数学重合的。

另外,从很多音乐创作技法和观念上来说,也是和数学有紧密联系的。比如早期音乐中时值最开始是以三等分来划分,后来才发展出两等分;以及各个模仿声部之间的比例的确定(早起音乐是没有我们今天乐谱上的小节线的,所以,音与音之间的时值比例在那时是一个更本质的音乐理论和创作元素);早期对八度、五度的运用,到逐渐加入三度和六度的过程,以及一直避免三全音的观念;音乐高潮放在黄金分割点上的技法;另外,一个实际的音乐作品的例子是Dufay的Nuper rosarum flores. 这部献给佛罗伦萨大教堂的委约作品,其音乐结构中包含了各种影射教堂建筑结构的数学比例,比如:talea的6:4:2:3的比例就是教堂圆顶的nave, transept, apse和高度(实在不知道怎么翻译-_-)的比例等等。

巴洛克时期发展成熟的各种复调手法,从某种程度上来说也就是数字的游戏。比如对主题的倒影,逆行和倒影逆行。

整个巴洛克时期、古典时期和浪漫主义时期通用的功能和声,也是和数学模式紧密相关的。比如V-I(i)就能确立一个新调,或者传统的转调都是在近关系调之间转,或者模进中的“首调模进”和“变调模进”的区别在哪(音阶不变或者音程不变),本质上都是长久以来从一个数学的逻辑推导出来的。

20世纪初,勋伯格打破传统调性体系后,不论是自由无调性还是序列音乐,还是再往后一点的octatonic音乐,都是建立在”音集“(set或者collection)理论上的。这个”音集“,就是把一个音高组合的材料数字化,然后再去用各种方式进行变形和”变奏“来发展。另外,不论是十二音的完整matrix,还是octatonic的音阶的移位,还是梅西安自己的有限移位调式,只要涉及到调式或者音阶的移位(transposition), 那都是和数学紧密相关的。另外一些音乐创作手法比如新复杂主义,根本性的构思就在于更加多变的音符时值比例,乐谱都是这样的:

再到后来,当电子音乐发展起来以后,很多电子音乐”创作“的软件或程序,其本身就是一种编程行为而不是传统的"音乐创作”思维了,比如Max.

总结一下来说,只要是以音程和音阶及其移位作为基本的音乐理论基础和创作素材的音乐作品,都是和数学思维紧密相关的。

声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com