一共有 55 种不同方法,理由如下:
当只有1级台阶时,只有 1 种方法(1)
当有2级台阶时,有 2 种方法(11,2)
当有3级台阶时,有 3 种方法(111,12,21)
当有4级台阶时,有 5 种方法(1111,112,211,121,22)
当有5级台阶时,有 8 种方法(11111,1112,1121,1211,2111,221,212,122)
不难看出,这是斐波那契数列,(即1,1,2,3,5,8,13,21……)
则当有6级台阶时,有5+8=13 种方法
当有7级台阶时,有8+13=21 种方法
当有8级台阶时,有13+21=34 种方法
当有9级台阶时,有21+34=55 种方法
所以答案为 55 种。