代入an+1-3an=3n中,得3n+1bn+1-3n+1bn=3n,
即得bn+1?bn=
1 |
3 |
所以数列{bn}是等差数列.(6分)
(2)解:因为数列{bn}是首项为b1=3-1a1=1,公差为
1 |
3 |
则bn=1+
1 |
3 |
n+2 |
3 |
从而有
an |
n+2 |
故Sn=
a1 |
3 |
a2 |
4 |
a3 |
5 |
an |
n+2 |
1?3n |
1?3 |
3n?1 |
2 |
则
Sn |
S2n |
3n?1 |
32n?1 |
1 |
3n+1 |
由
1 |
128 |
Sn |
S2n |
1 |
4 |
1 |
128 |
1 |
3n+1 |
1 |
4 |
即3<3n<127,得1<n≤4.
故满足不等式
1 |
128 |
Sn |
S2n |
1 |
4 |