一、位置不同:
驻点及一阶导不存在的点有可能是极值点。
二阶导为0的点及二阶导不存在的点有可能是拐点。
二、作用不同:
拐点可能是二阶导数为0或二阶导数不存在的点。求出所有二阶导数为0或不存在点,再进一步分析。
极值点可能是一阶导数为0的点,也可能是一阶导数不存在的点。所以求极值点的时候,找出所有一阶导数为0的点和不可导点。对这些点进行进一步的分析。
驻点是f'(x)=0的点是极值点;原函数在x=0点导数不为0,不是驻点。
三、意义不同:
极值点不一定是驻点,驻点也不一定是极值点。
驻点关注的是,一阶导数的值为0,不关注函数的单调性变化。
若该曲线图形的函数在拐点有二阶导数塌裂绝,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
扩展资料:
极值点是函数图像的某段子区间内上极大值或者极小值点的横坐标。
极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)。
若f(a)是函数f(x)的极大值或极小值,则a为函数f(x)的极值点,极大值点与极小值点统称为极值点。极值点是函数图像的某段子区间内上极大值或者极小值团姿点的横坐标源蠢。极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)
参考资料来源:百度百科-极值点