先把复数不等式化为实数不等式:
然后把不等式化为等式:
再根据方程画出曲线:
从上面的不等式看到,这是一个代数多项式,它所代表的区域应该是连续的,可以直观地判断出来,它所代表的区域就是圆外区域。由于不等式不取等号,所以不包含圆周。
也就是说,原来的不等式所代表的区域相当于在一张大平面上抠掉一个圆,那么根据普遍的观点,整个平面相当于一个单连通域,抠掉一个圆当然就成了多连通域了。
扩展资料:
种类:
单/双连通区域:设z=z(t)(a≤t≤b)为一条连续曲线,z(a)与z(b)分别称为C的起点与终点。对于满足a 由此可知,简单闭曲线自身不会相交。任意一条简单闭曲线C把整个复平面唯一地分成三个互不相交的点集,其中除去C自身以外,一个是有界区域,称为C的内部,另一个数无界区域,称为C的外部,C为它们的公共边界。 复平面上的一个区域G,如果在其中任做一条简单闭曲线,而闭曲线的内部总属于G,就称G为单连通区域。一个区域如果不是单连通区域,就称为多连通区域。