流体力学力学模型的意义:
1、连续介质模型:连续介质假设将流体区域看成由流体质点连续组成,占满空间而没有间隙,其物理特性和运动要素在空间是连续分布的。从而使微观运动的不均匀性、离散性、无规律性与宏观运动的均匀性、连续性、规律性达到了和谐的统一。
连续介质假说的目的:将微观不连续的流体当作连续介质处理后,其物理量在流场中就是连续分布的,这样,不仅理论分析中可以运用数学这一强有力的工具,也为试验研究提供了可能。
2、无粘性流体模型:流体是有粘性的,粘性流体运动时,由于粘性在流体内部形成流速梯度,流体质点间发生摩擦、碰撞引起能量损失,流体粘性的存在给研究流体的运动带来非常大的不便。
为了便于研究,抓住主要矛盾,由浇入深,在研究流体运动规律时,先忽略流体的粘性,把流体假定为无粘性,流体运动时,流体质点间没有摩擦力,从而没有能量损失,这种假想的流体称为理想流体。
3、 不可压缩流体模型:实际流体都有一定的弹性,流体受到压力作用时,分子间距离减小,宏观体积减小,宽度增大,除去外力后能恢复原状,这种性质称为压缩性(弹性)。
对于一定的流体,当压力变化不时太大时,流体密度的变化可忽略不变,可认为这种江体是不可压缩的流体。这给研究流体运动带来极大方便。
扩展资料:
流体力学的现场观测:
对自然界固有的流动现象或已有工程的全尺寸流动现象,利用各种仪器进行系统观测,从而总结出流体运动的规律并借以预测流动现象的演变。
过去对天气的观测和预报,基本上就是这样进行的。但现场流动现象的发生不能控制,发生条件几乎不可能完全重复出现,影响到对流动现象和规律的研究;现场观测还要花费大量物力、财力和人力。因此,人们建立实验室,使这些现象能在可以控制的条件下出现,以便于观察和研究。
流体力学的实验室模拟:
在实验室内,流动现象可以在短得多的时间内和小得多的空间中多次重复出现,可以对多种参量进行隔离并系统地改变实验参量。在实验室内,人们也可以造成自然界很少遇到的特殊情况(如高温、高压),可以使原来无法看到的现象显示出来。
现场观测常常是对已有事物、已有工程的观测,而实验室模拟却可以对还没有出现的事物、没有发生的现象(如待设计的工程、机械等)进行观察,使之得到改进。因此,实验室模拟是研究流体力学的重要方法。
要使实验数据与现场观测结果相符,必须使流动相似条件(见相似律)完全得到满足。不过对缩尺模型来说,某些相似准数如雷诺数和弗劳德数不易同时满足,某些工程问题的大雷诺数也难以达到。所以在实验室中,通常是针对具体问题,尽量满足某些主要相似条件和参数,然后通过现场观测验证或校正实验结果。
参考资料来源: