1-cos2x的求导等于2sin2x。
解答过程如下:
f(x)=1-cos2x
f'(x)=sin2x×(2x)'=2sin2x
当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。
如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f'(x)为区间[a,b]上的导函数。
值得注意的是,导数是一个数,是指函数f(x)在点x0处导函数的函数值。但通常也可以说导函数为导数,其区别仅在于一个点还是连续的点。
扩展资料
1、导数的四则运算规则
(1)(f(x)±g(x))'=f'(x)±g'(x)
例:(x^3-cosx)'=(x^3)'-(cosx)'=3*x^2+sinx
(2)(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)
例:(x*cosx)'=(x)'*cosx+x*(cosx)'=cosx-x*sinx
(3)(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/(g(x))^2
例:(sinx/x)'=((sinx)'*x-sinx*(x)')/x^2=(x*cosx-sinx)/x^2
2、符合函数的导数求法
复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数。
即对于y=f(t),t=g(x),则y'公式表示为:y'=(f(t))'*(g(x))'
例:y=sin(cosx),则y'=cos(cosx)*(-sinx)=-sinx*cos(cosx)
3、常用的导数公式
(lnx)'=1/x、(e^x)'=e^x、(C)'=0(C为常数)、(sinx)'=cosx、(cosx)'=-sinx