证明:(1)2sin1(sin1+sin2+sin3+...+sinn)
=cos0-cos2+cos1-cos3+cos2-cos4+...
+cos(n-2)-cosn+cos(n-1)-cos(n+1)
=cos0+cos1-cosn-cos(n+1)
(2)=>S=sin1+sin2+sin3+...+sinn=[cos0+cos1-cosn-cos(n+1)]/2sin1
=>S=[1+cos1-(cosn+cos(n+1))]/[2sin(1/2)*cos(1/2)]
=>S=[2*cos(1/2)*cos(1/2)-2cos(n+1/2)*cos(1/2)]/[2sin(1/2)*cos(1/2)]
=>S=[cos(1/2)-cos(n+1/2)]/sin(1/2)
(3)因为-cos(n+1/2)最大为1
所以[cos(1/2)-cos(n+1/2)]/2sin(1/2)<[cos(1/2)+1]/sin(1/2)
(4)又因为[cos(1/2)+1]/sin(1/2)=1/tg(1/2)
注意到sinx
(5)至此sin1+sin2+sin3+...+sinn=[cos(1/2)-cos(n+1/2)]/sin(1/2)<1/tg(1/2)<2