人工智能是一门包括计算机科学、控制学、信系论、语言论、神经生理学、心理学、数学、哲学等多种学科相互渗透发展起来的学科,其研究对象可以归纳为“机器智能、智能机器”,它体现在思维、感知、行为三个层次,而它要模拟眼神、扩展人的智能,其研究内容可以分为机器思维和思维机器、机器感知和感知机器、机器行为和行为机器三个层次。
研究人工智能的目的,一方面是要创造出具有智能的机器,另一方面是要弄清人类智能的本质,因此,人工智能既属于工程的范畴,又属于科学的范畴。通过研究和开发人工智能,可以辅助,部分替代甚至拓宽人类的智能,使计算机更好的造福人类。
目前,人工智能的研究是与具体领域相结合进行的。基本上有如下领域:
https://iknow-pic.cdn.bcebos.com/d043ad4bd11373f013140856af0f4bfbfaed04cb?x-bce-process=image/resize,m_lfit,w_450,h_600,limit_1/quality,q_85专家闹察系统
专家系统是依靠人类专家已有的知识建立起来的知识系统,目前专家系统是人工智能研究中开展较早、最活跃、成效最多的领域,广泛应用于医疗诊断、地质勘探、石油化工、军事、文化教育等各方面。它是在特定的领域内具有相应的知识和经验的程序系统,它应用人工智能技术、模拟人类专家解决问题时的思维过程,来求解领域内的各种问题,达到或接近专家的水平。
机器学习
机器学习的研究,主要在以下三个方面进行:一是研究人类学习的机理、人脑思维的过程;和机器学习的方法;以及建立针对具体任务的学习系统。
机器学习的研究是在信息科学、脑科学、神经心理学、逻辑学、模糊数学等多种学科基础上的。依赖于这些学科而共同发展。目前已经取得很大的进展,但还没有能完全解决问题。
https://iknow-pic.cdn.bcebos.com/1e30e924b899a9018c093cff16950a7b0208f53f?x-bce-process=image/resize,m_lfit,w_450,h_600,limit_1/quality,q_85模式识别
模式识别是研究如何使机器具有感知能力,主要研究视觉模式和听觉模式的识别。如识别物体、地形、图象、字体(如签字)等。在日常生活各方面以及军事上都有广大的用途。近年来迅速发展起来应用模糊数学模式、人工神经网络模式的方法逐渐取代传统的用统计模式和结构模式的识别方法。特别神经网络方法在模式识别中取得较大进展。
人工神经网络
人工神经网络是在研究人脑的奥秘中得到启发,试图用大量的处理单元(人工神经元、处理元件、电子元件等)模仿人脑神经系统工程结构和工作机理。
在人工神经网络中,信息的处理是由神经元之间的相互作用来实现的,知识与信息的存储表现为网络元件互连间分卖弯猜布式的物理联系,网络的学习和识别取决于和神经元连接权值的动态演化过程。
https://iknow-pic.cdn.bcebos.com/503d269759ee3d6d82aee00248166d224e4ade8b?x-bce-process=image/resize,m_lfit,w_450,h_600,limit_1/quality,q_85人工智能研究中型的近期目标;是使现有的计算机不仅能做一般的数值计算及非数值信息的数据处理,而且能运用知识处理问题,能模拟人类的部分智能行为。按照这一目标,根据现行的计算机的特点研究实现智能的有关理论、技术和方法,建立相应的智能系统。