超几何分布的数学期望和方差的算法

2022-08-11 科技 105阅读

1、期望值计算公式:

E(X)=(n*M)/N [其中x是样本数,n为样本容量,M为样本总数,N为总体中的个体总数],求出均值,这就是超几何分布的数学期望值。

2、方差计算公式:

V(X)=X1^2*P1+X2^2*P2+...Xn^2*Pn-a^2 [这里设a为期望值]

扩展资料:

在统计学中,当估算一个变量的期望值时,一个经常用到的方法是重复测量此变量的值,然后用所得数据的平均值来作为此变量的期望值的估计。

在概率分布中,期望值和方差或标准差是一种分布的重要特征。

在经典力学中,物体重心的算法与期望值的算法十分近似。

当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。 

样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。

参考资料来源:百度百科-期望值

百度百科-方差

声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com